
 

  Document Number: 333915-013 

  
 
 
 
 
 

  
  

Intel® Virtual RAID on CPU 
(Intel® VROC) for Linux* 
User Guide 

Revision 013 

July 2024 

 
  



   

2   333915 

 

 

 

 

 

 

 

 

 
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis. You may not use 
or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel® products 
described herein. You agree to grant Intel® a non-exclusive, royalty-free license to any patent claim thereafter drafted which 
includes subject matter disclosed herein. 

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. 

All information provided here is subject to change without notice. Contact your Intel® representative to obtain the latest Intel® 
product specifications and roadmaps. 

All product plans and roadmaps are subject to change without notice. 

The products described may contain design defects or errors known as errata, which may cause the product to deviate from 
published specifications. Current characterized errata are available on request. 

Intel® technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service 
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your 
system manufacturer or retailer or learn more at Intel®.com. 

Intel® disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness 
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or 
usage in trade. 

Altering clock frequency, voltage, or memory interface speeds may void any product warranties and reduce stability, security, 
performance, and life of the processor and other components. Intel has not validated processor running memory above Plan-Of-
Record (POR) speed. DRAM/DIMM devices should support desired speed, check with DRAM/DIMM vendors for details. System 
manufacturers are responsible for all validation and assume the risk of any stability, security, performance, or other functional 
issues resulting from such alterations. 

© Intel® Corporation. Intel®, the Intel® logo, Xeon, and other Intel® marks are trademarks of Intel® Corporation or its subsidiaries.  

*Other names and brands may be claimed as the property of others.  

Copyright© 2016-2024, Intel® Corporation. All rights reserved. 



   

333915  3 

Contents 
1 Introduction ...................................................................................................... 7 

1.1 Reference OEM Platform Documentation ............................................................... 7 
1.2 Supported RAID Volumes .................................................................................... 7 
1.3 Supported Linux* OS Distributions ..................................................................... 10 
1.4 Terminology .................................................................................................... 11 

2 Manage Intel® VROC RAID in UEFI HII ................................................................ 14 
2.1 Enabling Intel® VROC (NVMe RAID) in UEFI HII ................................................... 14 
2.2 Enabling Intel® VROC (SATA RAID) in UEFI HII .................................................... 16 
2.3 Creating Intel® VROC NVMe RAID Volume in UEFI HII........................................... 18 
2.4 Creating Intel® VROC SATA RAID Volume in UEFI HII ........................................... 22 
2.5 Removing RAID Volumes in UEFI HII .................................................................. 28 

3 Installation of Intel® VROC Linux* OS Drivers and Tools ....................................... 31 
3.1 Installation of Intel® VROC Linux* Update Packages ............................................. 31 
3.2 Configuring Intel® VROC in Linux* Distributions with Inbox Support ....................... 36 

4 Intel® VROC RAID Management in Linux* ........................................................... 37 
4.1 Examine System’s Intel® VROC RAID Capabilities ................................................. 37 
4.2 Creating Intel® VROC RAID Volume .................................................................... 38 
4.3 Reporting Intel® VROC RAID Information ............................................................ 41 
4.4 Creating Intel® VROC RAID Configuration File ...................................................... 44 
4.5 Intel® VROC RAID Volume Initialization/Resync ................................................... 44 
4.6 Adding a Hot Spare Drive .................................................................................. 45 
4.7 Configuring Global Hot Spare ............................................................................. 45 
4.8 Removing Intel® VROC RAID Volumes ................................................................ 46 
4.9 Assembling Intel® VROC RAID Volumes .............................................................. 47 
4.10 Creating File System on an Intel® VROC RAID Volume .......................................... 48 
4.11 Removing an Active Intel® VROC RAID Member Disk ............................................ 48 
4.12 Recovery of Intel® VROC RAID Volumes .............................................................. 49 

5 Intel® VROC RAID Logging and Monitoring in Linux* ............................................. 52 
5.1 Intel® VROC RAID Logging in Linux* .................................................................. 52 
5.2 Intel® VROC RAID Monitoring in Linux* ............................................................... 54 
5.3 Intel® VROC RAID Alerts in Linux* ..................................................................... 55 
5.4 Develop a Program to Handle Intel® VROC Alerts ................................................. 55 

6 Intel® VROC RAID Advanced Usages in Linux* ..................................................... 58 
6.1 Changing RAID Volume Name ............................................................................ 58 
6.2 Enabling and Disabling PPL for Intel® VROC RAID 5 RWH Protection ....................... 58 
6.3 Enabling and Disabling Write-Intent Bitmap ......................................................... 59 
6.4 Changing RAID Chunk Size ................................................................................ 60 
6.5 Online Capacity Expansion (OCE) ....................................................................... 61 
6.6 RAID Level Migration ........................................................................................ 62 

7 Intel® VROC LED Management in Linux* ............................................................. 66 
7.1 Installing ledmon Package ................................................................................. 66 
7.2 Configuring ledmon .......................................................................................... 66 
7.3 Using ledctl Utility ............................................................................................ 67 
7.4 LED Activity During Hot-Plug Events ................................................................... 68 
7.5 Advanced LED Management .............................................................................. 68 



   

4   333915 

Appendix A mdadm Quick Start Guide ................................................................................. 71 
Appendix B MDRAID Sysfs Components ............................................................................... 73 
Appendix C RAID Monitoring Parameters and Events ............................................................. 76 
Appendix D ledmon.conf .................................................................................................... 78 

Figures 

Figure 1-1. Intel® VROC Matrix RAID ................................................................... 10 
Figure 2-1. Intel® VMD Technology BIOS Setting .................................................. 15 
Figure 2-2. Intel® VMD Ports Configuration for Socket 0 ........................................ 15 
Figure 2-3. Intel® VMD Ports Configuration for Socket 1 ........................................ 16 
Figure 2-4. SATA and RST Configuration BIOS Setting ........................................... 17 
Figure 2-5. SATA Ports Configuration .................................................................. 17 
Figure 2-6. Intel Virtual RAID on CPU BIOS Setting ............................................... 18 
Figure 2-7. Create NVMe RAID Volume Option in BIOS .......................................... 19 
Figure 2-8. NVMe RAID Volume Options in BIOS ................................................... 19 
Figure 2-9. Drives Selection for NVMe RAID Volume Creation ................................. 20 
Figure 2-10. Strip Size Selection for NVMe RAID Volume Creation ........................... 20 
Figure 2-11. Volume Capacity Selection for NVMe RAID Volume Creation ................. 21 
Figure 2-12. Confirmation Message to Create NVMe RAID Volume........................... 21 
Figure 2-13. Intel VROC NVMe RAID Volumes Created ........................................... 22 
Figure 2-14. Intel VROC SATA Controller BIOS Setting .......................................... 23 
Figure 2-15. Create SATA RAID Volume Option in BIOS ......................................... 23 
Figure 2-16. Name Option for SATA RAID Volume Creation .................................... 24 
Figure 2-17. RAID Level Option for SATA RAID Volume Creation ............................. 24 
Figure 2-18. Drives Selection for SATA RAID Volume Creation ................................ 25 
Figure 2-19. Strip Size Selection for SATA RAID Volume Creation ........................... 25 
Figure 2-20. Volume Capacity Selection for SATA RAID Volume Creation ................. 26 
Figure 2-21. Confirmation Message to Create SATA RAID Volume ........................... 27 
Figure 2-22. Intel VROC SATA RAID Volumes Created ........................................... 28 
Figure 2-23. Intel Virtual RAID on CPU BIOS Setting ............................................. 29 
Figure 2-24. Intel VROC Managed Volumes .......................................................... 29 
Figure 2-25. Confirmation Message to Delete an Intel VROC RAID Volume ............... 30 
Figure 3-1. Start OS Installation Process ............................................................. 32 
Figure 3-2. Configuring Kernel Boot Parameters ................................................... 32 
Figure 3-3. Driver Disk Device Selection Before Refresh ........................................ 32 
Figure 3-4. Driver Disk Device Selection After Refresh ........................................... 33 
Figure 3-5. Extracting kmod-iavmd Package......................................................... 33 
Figure 3-6. Continue OS Installation .................................................................... 33 
Figure 3-7. Booting Operating System ................................................................. 34 
Figure 3-8. Configuring OS Boot Parameters ........................................................ 34 

Tables 

Table 1-1. RAID 0 Overview ................................................................................. 8 
Table 1-2. RAID 1 Overview ................................................................................. 8 
Table 1-3. RAID 5 Overview ................................................................................. 9 
Table 1-4. RAID 10 Overview ............................................................................... 9 
Table 1-5. Intel® Matrix RAID Overview ............................................................... 10 
Table 1-6. Terminology...................................................................................... 11 
Table 4-1. RAID Volume Creation Customizable Parameters ................................... 40 
Table 4-2. Explanation of md126 Global Properties ............................................... 42 
Table 4-3. Explanation of md126 Additional Properties .......................................... 42 
Table 5-1. Intel® VROC RAID Alerts in Linux* ....................................................... 55 
Table 6-1. Migration Capabilities with IMSM ......................................................... 63 



   

333915  5 

Table 7-1. The Enhanced LEDs Management Capabilities ....................................... 69 
Table 7-2. Ledmon Options Listed ....................................................................... 70 
Table C-1. Parameters for mdadm in Monitor Mode ............................................... 76 
Table C-2. Monitoring Events.............................................................................. 76 

 

s 



   

6   333915 

Revision History 
Document 
Number Revision Description Date 

333915 

001 Initial release March 2016 

002 Updated for Intel® VROC/RSTe 5.0 release March 2017 

003 Updated for Intel® VROC/RSTe 5.1 release April 2017 

004 Updated for Intel® VROC/RSTe 5.3 release October 2017 

005 Updated for Intel® VROC/RSTe 5.4 release March 2018 

006 Updated for Intel® VROC 6.0 release December 2018 

007 Updated for Intel® VROC 6.3 release November 2019 

008 Updated for Intel® VROC 7.0 release June 2020 

009 Updated for Intel® VROC 7.5 release December 2020 

010 Updated for Intel® VROC 8.0 release November 2022 

011 Revision Update Only. No Content Change April 2023 

012 Updated for Intel® VROC 8.2 release November 2023 

013 Updated for Intel® VROC 9.0 release July 2024 

§§



Introduction  

333915  7 

1 Introduction 
The purpose of this document is to help enable users to properly set up, configure, and 
manage Intel® Virtual RAID on CPU (Intel® VROC) RAID volumes on NVMe drives 
managed by the Intel® Volume Management Device (Intel® VMD) controller as well as 
Intel® VROC RAID volumes on SATA drives attached to the SATA and/or sSATA and/or 
tSATA controllers for Linux* Operating System (OS). Within the Linux* OS, the primary 
configuration software to manage Intel® VROC RAID is the mdadm application, a native 
Linux* tool that is used with Intel® VROC on Linux*.  

This document describes how to use this application and many of the options offered to 
setup, manage, and monitor Intel® VROC RAID.  

Note: The information in this document is only relevant on systems with a supported Intel® 
chipset, with a supported operating system. Ensure that your platform and operating 
system is properly configured to support Intel® VROC.  

Note: The majority of the information in this document is related to software configuration. 
Intel® is not responsible for the software written by third party vendors or the 
implementation of Intel® components in the products of third-party manufacturers. 

Note: This user guide is not an mdadm user guide, it will only focus on those commands that 
are used to support Intel® VROC.  

The Intel® VROC provides enterprise RAID support for both NVMe SSDs and SATA 
devices for enterprise servers, workstations and some high-end desktops based on 
Intel® Xeon® processors.  

• Intel® VROC (VMD NVMe RAID): This product provides an enterprise RAID solution on 
platforms that support the Intel® VMD technology.  

• Intel® VROC (SATA RAID): This product provides an enterprise RAID solution for 
SATA devices connected to SATA controllers on the Intel® Platform Control Hub (PCH) 
configured for RAID mode. 

1.1 Reference OEM Platform Documentation 
Refer to your OEM for a full list of available feature sets. If any of the information in this 
document conflicts with the support information provided by the platform OEM, the 
platform documentation and configurations take precedence. 

Customers should always contact the place of purchase or system/software 
manufacturer with support questions about their specific hardware or software 
configuration. 

1.2 Supported RAID Volumes 
Intel® VROC product provides high-performance NVMe RAID capabilities and allows you 
to create RAID arrays and spanned volumes. Another advanced feature of Intel® VROC 
is the ability to roam an array between Linux* and Microsoft* Windows host systems. 



  Introduction 

8   333915 

Intel® VROC for Linux* supports the following RAID levels: 

• RAID 0 

• RAID 1 

• RAID 5 

• RAID 10 

• Intel® Matrix RAID 

1.2.1 RAID 0 (Striping) 

RAID 0 uses the read/write capabilities of two or more drives working in parallel to 
maximize the storage performance of a computer system. 

The following table provides an overview of the advantages, the level of fault-tolerance 
provided, and the typical usage of RAID 0. 

Table 1-1. RAID 0 Overview 

Drives Supported 2 minimum 

Advantage High transfer rates 

Fault-tolerance None – If one drive fails all data will be lost 

Application 

Typically used in desktops and workstations for maximum 
performance for temporary data and high I/O rate. It also should be 
noted that although RAID 0 can be scaled to many drives there is a 
performance sweet spot specific to your implementation. 

1.2.2 RAID 1 (Mirroring) 

RAID 1 arrays contain two drives where the data is copied to both of the drives in real 
time to provide good data reliability in the case of a single disk failure. When one disk 
drive fails, all data is immediately available on the other without any impact to the 
integrity of the data. 

The following table provides an overview of the advantages, the level of fault-tolerance 
provided, and the typical usage of RAID 1. 

Table 1-2. RAID 1 Overview 

Drives Supported 2 maximum 

Advantage 
Redundancy of data. One drive may fail, but data will continue to be 
accessible. A rebuild to a new drive is recommended to maintain 
data redundancy. 

Fault-tolerance Excellent – Drive mirroring means that all data on one drive is 
duplicated on another drive. 

Application Typically used for smaller systems where the capacity of one disk is 
sufficient and for any application(s) requiring very high availability.  



Introduction  

333915  9 

1.2.3 RAID 5 (Striping with Parity) 

RAID 5 arrays contain three (minimum) or more drives where the data and parity are 
striped across all the drives in the array. Parity is a mathematical method for recreating 
data that was lost from a single drive, which increases fault-tolerance. If there are N 
drives in the RAID 5 array, the capacity for data would be N - 1 drives. For example, if 
the RAID 5 array has 5 drives, the data capacity for this RAID array consists of 4 drives.  
The following table provides an overview of the advantages, the level of fault-tolerance 
provided, and the typical usage of RAID 5. 

Table 1-3. RAID 5 Overview 

Drives Supported 3 minimum  

Advantage High percentage of usable capacity and high read performance as 
well as fault-tolerance. 

Fault-tolerance Excellent - Parity information allows data to be rebuilt after replacing 
a failed drive with a new drive. 

Application 
Storage of large amounts of critical data. As with RAID 0 Striping, 
although RAID 5 can be scaled to many drives there is a 
performance sweet spot specific to your implementation. 

1.2.4 RAID 10 

A RAID 10 array uses four (minimum) or more drives to create a combination of RAID 
levels 0 and 1. It is a striped set whose members are each a mirrored set.  It provides a 
great balance between performance and excellent fault tolerance as it allows up to 2 
drives to fail while still maintaining access to data. 

Note: Double degradation (2 drives failures) support is limited to cases where drives from 
opposite mirrored set are failed.  

The following table provides an overview of the advantages, the level of fault-tolerance 
provided, and the typical usage of RAID 10. 

Table 1-4. RAID 10 Overview 

Drives Supported 4 minimum 

Advantage Combines the read performance of RAID 0 with the fault-tolerance of 
RAID 1. 

Fault-tolerance Excellent – Drive mirroring means that all data on one drive is 
duplicated on another drive. 

Application High-performance applications requiring data protection, such as 
video editing. 

1.2.5 Intel® Matrix RAID 

The Intel® VROC package provides high-performance NVMe RAID capabilities and allows 
you to create RAID arrays and spanned volumes. Matrix arrays indicate there are up to 
two RAID volumes in a single RAID container. A container is a collection of devices that 
are managed as a set. Within a container, there is one set of metadata that describes all 
the arrays in the container. Intel® Matrix Storage Manager (IMSM) metadata is used to 



  Introduction 

10   333915 

support Intel® Matrix RAID. An important requirement for Matrix RAID is that the 
volumes within the container span the same set of member drives. 

Intel® VROC Matrix RAID allows user to: 
1. Fully utilize the RAID member disks’ capacity (second array can be used for other 

application’s data storage, otherwise the space could be unused). 
2. Use combination of different RAID levels to meet different requirements of 

redundancy and performance. 

Table 1-5. Intel® Matrix RAID Overview 

Drives Supported Same count of drives per each RAID array. Used levels must support 
the count. 

Advantage Combination of two RAID arrays. 

Fault-tolerance Individual for each level used inside. 

Application Special user configuration. 

Figure 1-1. Intel® VROC Matrix RAID 

RAID10

RAID5

Disk 0 Disk 1 Disk 2 Disk 3

Intel VROC Matrix RAID

 

As an example, in the above diagram, on an Intel® VROC enabled system, Intel® VROC 
Matrix RAID allows you to create both a RAID 10 volume as well as a RAID 5 volume 
across four drives. Refer to Section 4.2.5 Additional INTEL® VROC RAID Volume Creation 
Examples to learn how to create Intel® Matrix RAID.  

1.3 Supported Linux* OS Distributions 
Intel® VROC Linux* driver and tools are open source. It is up to specific Operating 
System Vendors (OSVs) to pull in Intel® VROC features and patches from upstream 
Linux* community and integrate into their Linux* OS distributions. For most of Linux* 
OS distributions, the inbox kernel driver and tools can support Intel® VROC functions 
well and there is no additional software download required. For some Linux* OS 
distributions in order to support new generation platforms, it requires an out-of-box 
Intel® VROC Linux* driver package. For detailed Linux* OS distributions with inbox or 
out-of-box Intel® VROC support, refer to the Intel® Virtual RAID on CPU (Intel® VROC) 
Supported Configurations.  

https://www.intel.com/content/www/us/en/support/articles/000030310.html
https://www.intel.com/content/www/us/en/support/articles/000030310.html


Introduction  

333915  11 

1.4 Terminology 

Table 1-6. Terminology 

Term Description 

API Application Programming Interface 

BIOS Basic Input/Output System 

Array 
This term is representative of a mdadm container required for Intel® 
metadata-based volumes using the IMSM option during Volume 
creation. 

Container A container is a type of array used with Intel® metadata or other non-
native metadata. 

GB Gigabyte 

GiB Gibibyte (1024 x 1024 x 1024 bytes) 

GA General Access – Operating System release package fully validated by 
Red Hat Linux*. 

HII Human Interface Infrastructure 

Hot-Plug The unannounced removal and insertion of a drive while the system is 
powered on. 

I/O Input/Output 

Initramfs Initial RAM File System 

IMSM Intel® Matrix Storage Manager 

KB Kilobyte  

KiB Kibibyte (1024 bytes) 

Left-Symmetric Default layout scheme for RAID 5 configurations. Not supported with 
IMSM metadata 

Left-Asymmetric Parity bit layout scheme used in RAID 5 configurations.  

Matrix RAID Two different RAID volumes within a single RAID array container. 

MB Megabyte  

MiB Mebibyte (1024 x 1024 bytes) 

MD Linux* kernel Multiple Device driver 

Member A SATA or NVMe drive used within a RAID array. 



  Introduction 

12   333915 

Term Description 

mdadm 
mdadm is a Linux* utility developed to manage software RAID devices 
on Linux*. It is available under the GPL license version 2 or later and 
supports SATA and NVMe SSDs. 

NVMe Non-volatile Memory Express 

OS Operating System 

OSV Operating System Vendor (e.g., Red Hat, SUSE) 

Pre-OS A BIOS component to configure Intel® VROC RAID. 

RAID 
Redundant Array of Independent Disks: allows data to be distributed 
across multiple drives to provide data redundancy or to enhance data 
storage performance. 

RAID 0 (striping) 

The data in the RAID volume is striped across the array's members. 
Striping divides data into units and distributes those units across the 
members without creating data redundancy but improving read/write 
performance. 

RAID 1 (mirroring) 

The data in the RAID volume is mirrored across the RAID array's 
members. Mirroring is the term used to describe the key feature of RAID 
1, which writes duplicate data from one drive to another; therefore, 
creating data redundancy and increasing fault tolerance. 

RAID 5 (striping with 
parity) 

The data in the RAID volume and parity are striped across the array's 
members. Parity information is written with the data in a rotating 
sequence across the members of the array. This RAID level is a 
preferred configuration for efficiency, fault-tolerance, and performance.  

RAID 10 (striping and 
mirroring) 

The RAID level where information is striped across a two drive arrays for 
system performance. Each of the drive in the array has a mirror for fault 
tolerance. RAID 10 provides the performance benefits of RAID 0 and the 
redundancy of RAID 1. However, it requires four hard drives so it’s the 
least cost effective. 

RAID Array A logical grouping of physical drives. 

RAID Volume 

A fixed amount of space across a RAID array that appears as a single 
physical drive to the operating system. Each RAID volume is created 
with a specific RAID level to provide data redundancy or to enhance 
data storage performance. 

Recovery Drive The drive that is the designated target drive in a recovery volume. 

Hot Spare Drive 
Hot spare drive is a disk or group of disks used to automatically or 
manually, depending upon the hot spare policy, replace a failing or 
failed disk in a RAID configuration.  

RHEL Red Hat Enterprise Linux* 

Intel® RSTe Intel® Rapid Storage Technology enterprise.   

RWH It stands for RAID5 Write Hole and can cause data integrity issue 

https://en.wikipedia.org/wiki/RAID


Introduction  

333915  13 

Term Description 

SLES SUSE Linux* Enterprise Server 

TB Terabyte 

TiB Tebibyte (1024 x 1024 x 1024 x 1024 bytes) 

UEFI Mode Unified Extensible Firmware Interface. Refers to the system setting in 
the BIOS 

Volume This term is representative of mdadm RAID within an Intel® metadata-
based container. 

Volume initialization  
Immediately after a RAID volume has been created, initialization (or 
resync) commences if the RAID level is 1, 10, or 5 to guarantee volume 
data integrity 

Intel® VROC Intel® Virtual RAID on CPU 

Intel® VROC IC Intel® VROC integrated Caching 

§§ 



  Manage Intel® VROC RAID in UEFI HII 

14   333915 

2 Manage Intel® VROC RAID in 
UEFI HII 
Intel® VROC has the capability to manage RAID volumes through platform UEFI HII. A 
platform BIOS integrated with Intel® VROC PreOS/UEFI driver is able to create a RAID 
volume for OS installation, delete a RAID volume, add a hot-spare drive, turn on/off 
locate LED, etc.   

This section illustrates how to enable and create Intel® VROC RAID volumes with 
instructions and steps based on Intel® Customer Reference Board (CRB). These 
instructions may differ from platform vendors. Refer to the user guide or instructions 
supplied by the platform vendor.    

2.1 Enabling Intel® VROC (NVMe RAID) in UEFI HII 
Intel® VROC (NVMe RAID) is based on Intel® VMD hardware inside Intel® Xeon based 
processors. Intel® VMD needs to be enabled on the platform BIOS. The following steps 
illustrate how to enable Intel® VMD in the Intel® CRB UEFI HII.  
1. Immediately following POST, select the option that will allow the user to access the 

BIOS setup menu. This example uses <F2>. 
2. For the Intel® CRB reference BIOS, the user will want to use the arrow keys to move 

the cursor to the EDKII Menu (it will become highlighted) and press <Enter>. 
3. Using the arrow keys, move the cursor to Socket Configuration and press 

<Enter>. 
4. Using the arrow keys, move the cursor to IIO Configuration and press <Enter>. 
5. Using the arrow keys, move the cursor to Intel® VMD technology and press 

<Enter>. 



Manage Intel® VROC RAID in UEFI HII  

333915  15 

Figure 2-1. Intel® VMD Technology BIOS Setting 

 

6. Using the arrow keys, move the cursor to Intel VMD for Volume Management 
Device on Socket 0 and press <Enter>. 

7. Select the correct IOUs# from which NVMe SSDs are attached. In this example, IOU 
4 is selected. Enable VMD, VMD port A-H, and Hot Plug capable, check 
MemBar1 size is [26] or above.  

Figure 2-2. Intel® VMD Ports Configuration for Socket 0 

 

8. Press <Esc> and then move to Intel VMD for Volume Management Device on 
Socket 1. Do the same enabling of VMD functions on the corresponding IOU# ports. 
In this example, IOU 0 is enabled with VMD function on all the A-H ports.  



  Manage Intel® VROC RAID in UEFI HII 

16   333915 

Figure 2-3. Intel® VMD Ports Configuration for Socket 1 

 

9. Save settings by pressing <F10> to Save Changes and Exit.  

Note: Consult the user’s platform BIOS manufacturer documentation for a complete list of 
options that can be configured. 

2.2 Enabling Intel® VROC (SATA RAID) in UEFI HII 
Intel® VROC (SATA RAID) is based on Intel® PCH SATA controllers. Intel® SATA 
controllers need to be enabled and configured as RAID mode on the platform BIOS. The 
following steps illustrate how to enable Intel® PCH SATA controllers in the Intel® CRB 
UEFI HII. 
1. Immediately following POST, select the option that will allow the user to access the 

BIOS setup menu. This example uses <F2>. 
2. For the Intel® CRB reference BIOS, the user will want to use the arrow keys to move 

the cursor to the EDKII Menu (it will become highlighted) and press <Enter>. 
3. Using the arrow keys, move the cursor to Platform Configuration and press <Enter>. 
4. Using the arrow keys, move the cursor to PCH-IO Configuration and press <Enter>. 
5. Using the arrow keys, move the cursor to SATA And RST Configuration and press 

<Enter>. 



Manage Intel® VROC RAID in UEFI HII  

333915  17 

Figure 2-4. SATA and RST Configuration BIOS Setting 

 

6. Using the arrow keys, move the cursor to Controller 1 SATA And RST Configuration 
and press <Enter>. 

Note: In this example, Controller 1 among 3 SATA controllers on Intel® CRB is used. It is with 
the same steps to enable SATA RAID on other two controllers.  
7. Change SATA Mode Selection to <RAID>, Sata Interrupt Selection to <Msix>, SATA 

SGPIO Enable to <Enable>. Within the same page, change SATA Port 0~7’s Hot Plug 
to <Enabled>. 

Figure 2-5. SATA Ports Configuration 

 

8. Save settings by pressing <F10> to Save Changes and Exit. 



  Manage Intel® VROC RAID in UEFI HII 

18   333915 

2.3 Creating Intel® VROC NVMe RAID Volume in UEFI 
HII 
This section illustrates how to create an Intel® VROC NVMe RAID volume in the Intel® 
CRB UEFI HII. 

The following assumptions have been made: 

• You have enabled Intel® VMD within system BIOS. 

• You have sufficient drives of the appropriate size and type to create the RAID volume. 

• The drives are connected to the system properly per your vendor’s specifications.  

• The Pre-OS is able to see all drives.  

To create a RAID volume: 
1. To enter the Setup Menu, press the appropriate key indicated on the screen during 

boot up. This example uses <F2>.  
2. Navigate to EDKII Menu and press <Enter>. 
3. Navigate to Intel Virtual RAID on CPU (Intel® VROC) and press <Enter>. 

Figure 2-6. Intel Virtual RAID on CPU BIOS Setting 

 

4. Navigate to ALL Intel VMD Controllers and press <Enter>, then select Create 
RAID Volume and press <Enter>. 

5. Press the <Enter> key to type in a volume name or move down the cursor to 
accept the default name. 



Manage Intel® VROC RAID in UEFI HII  

333915  19 

Figure 2-7. Create NVMe RAID Volume Option in BIOS 

 

6. Press the <Enter> key, then select the RAID level by pressing the <Enter> key 
and using the arrow keys to scroll through the available values. Highlight the desired 
RAID level and press <Enter> to set the RAID level. 

7. Only data volumes are supported in this configuration to Enable RAID Spanned 
over VMD controllers, boot volumes are not supported.  
To enable spanned volumes, use the arrow key to highlight the < > bracket and 
press <Enter>. This will open a small selection menu. Navigate the cursor to the X 
and press <Enter> to enable volume spanning. To disable, you would set the value 
back to blank and press <Enter> to save the value. 

Figure 2-8. NVMe RAID Volume Options in BIOS 

 

8. Press the <Enter> key. Using the arrow keys, select the drives one by one by 
highlighting the < > bracket on the line next to the drive’s port number. Press 
<Enter> to open the selection menu which will be set to blank or off status. 
Navigate to highlight the X and press <Enter> to include the drive within the array. 

9. Repeat Step 8 for each drive required within this array.  



  Manage Intel® VROC RAID in UEFI HII 

20   333915 

Figure 2-9. Drives Selection for NVMe RAID Volume Creation 

 

10. Unless the user has selected a RAID 1, select the strip size by using the arrow keys 
and press <Enter> to open the options menu. Utilize the arrow keys to select the 
desired strip size and press <Enter> to save the value.  

Figure 2-10. Strip Size Selection for NVMe RAID Volume Creation 

 

11. Select the volume capacity and press the <Enter> key. The default value will be 
displayed as the maximum capacity available with the drives selected. The value is 
calculated in bytes. A 700GB drive would use the following math: 700 * 1024 = 
716000. 

Note: Unless specifically selected, the default volume capacity will be calculated based on 95% 
of the available space of the smallest physical disk. This allows for the variances in the 



Manage Intel® VROC RAID in UEFI HII  

333915  21 

physical disk capacities from different vendors. This feature is called Disk Coercion which 
is a common feature of most RAID solutions. 

Figure 2-11. Volume Capacity Selection for NVMe RAID Volume Creation 

 

12. Navigate to Create Volume and press <Enter>. When showing the warning, select 
Yes to create the RAID volume. 

Figure 2-12. Confirmation Message to Create NVMe RAID Volume 

 

13. The user will then be returned to the Intel Virtual RAID on CPU screen and the 
newly created RAID volume will be listed just below the text Intel VROC Managed 
Volumes.  

Note: Other drives or unused portions of drives will be listed under Non-RAID Physical Disks. 
Those may be used to create additional RAID volumes.  



  Manage Intel® VROC RAID in UEFI HII 

22   333915 

Figure 2-13. Intel VROC NVMe RAID Volumes Created 

 

14. To exit the user interface, press <Esc>. Press <Esc> again, the user will be 
presented with the following message: “Changes have not saved. Save changes and 
exit? Press ‘Y’ to save and exit, ‘N’ to discard and exit, ‘ESC’ to cancel”. Press <Y> to 
save and exit.  

Note: Not saving at this time will discard the changes made, including all changes and 
configuration settings for the RAID array.  
15. To save and reboot, in order to begin the operating system installation, press <Esc> 

to return to the Main Menu. Navigate to select Reset and press <Enter> to reboot 
the system back to the boot menu.  

Note: For RAID levels 1, 5 and 10, the system will not automatically initialize these volumes in 
the UEFI. This will need to be accomplished once the Operating System has been 
installed. 

2.4 Creating Intel® VROC SATA RAID Volume in UEFI 
HII 
1. Enter into the BIOS configuration setup menu to access the Intel® VROC UEFI HII 

interface. This example uses <F2>. 
2. In this example of Intel® CRB reference BIOS, the user can use the arrow keys to 

move the cursor to the EDKII Menu and press <Enter>. Then, use the arrow keys, 
move the cursor to Intel VROC SATA Controller and press <Enter>. 



Manage Intel® VROC RAID in UEFI HII  

333915  23 

Figure 2-14. Intel VROC SATA Controller BIOS Setting 

 

3. Select Create RAID Volume. 

Figure 2-15. Create SATA RAID Volume Option in BIOS 

 

4. Press the <Enter> key to type in a volume name or move down the cursor to accept 
the default name. 



  Manage Intel® VROC RAID in UEFI HII 

24   333915 

Figure 2-16. Name Option for SATA RAID Volume Creation 

 

5. Select the RAID level by pressing the <Enter> key and using the arrow keys to scroll 
through the available values. Highlight the desired RAID type and press <Enter> to 
set the RAID type.  

Figure 2-17. RAID Level Option for SATA RAID Volume Creation 

 

6. Using the arrow keys, select the drives one by one by highlighting the < > bracket 
on the line next to the drive’s port number. Press <Enter> to open the selection 
menu, which will be set to blank or off status. Navigate to highlight the X and press 
<Enter> to include that drive within the array.  



Manage Intel® VROC RAID in UEFI HII  

333915  25 

Figure 2-18. Drives Selection for SATA RAID Volume Creation 

 

7. Repeat Step 6 for each drive required within this array.  
8. Unless the user has selected a RAID 1, select the strip size by using the arrow keys 

and press <Enter> to open the options menu. Utilize the arrow keys to select the 
desired strip size and press <Enter> to save the value.  

Figure 2-19. Strip Size Selection for SATA RAID Volume Creation 

 

9. Select the volume capacity and press the <Enter> key. The default value will be 
displayed as the maximum capacity available with the drives selected. The value is 
calculated in bytes. A 700GB drive would use the following math: 700 * 1024 = 
716000. 



  Manage Intel® VROC RAID in UEFI HII 

26   333915 

Note: Unless specifically selected, the default volume capacity will be calculated based on 95% 
of the available space of the smallest physical disk. This allows for the variances in the 
physical disk capacities from different vendors. This feature is called Disk Coercion which 
is a common feature of most RAID solutions. 

Figure 2-20. Volume Capacity Selection for SATA RAID Volume Creation 

 

10. Navigate to Create Volume and press <Enter>, then select Yes to create the RAID 
volume.  



Manage Intel® VROC RAID in UEFI HII  

333915  27 

Figure 2-21. Confirmation Message to Create SATA RAID Volume 

 

11. The user will then be returned to the Intel® VROC SATA Driver screen and the 
newly created RAID volume will be listed just below the text RAID Volumes.  

Note: Other drives or unused portions of drives will be listed under Non-RAID Physical Disks. 
These may be used to create additional RAID volumes.  



  Manage Intel® VROC RAID in UEFI HII 

28   333915 

Figure 2-22. Intel VROC SATA RAID Volumes Created 

 

12. To exit the user interface, press <Esc>. Press <Esc> again, the user will be 
presented with the following message: “Changes have not saved. Save changes and 
exit? Press ‘Y’ to save and exit, ‘N’ to discard and exit, ‘ESC’ to cancel”. Press <Y> to 
save and exit.  

Note: Not saving at this time will discard the changes made, including all changes and 
configuration settings for the RAID array.  

13. To save and reboot, in order to begin the operating system installation, press <Esc> 
to return to the Main Menu. Navigate to select Reset and press <Enter> to reboot 
the system back to the boot menu.  

Note: For RAID levels 1, 5 and 10 the system will not automatically initialize these volumes 
via the UEFI. This will need to be accomplished once the Operating System has been 
installed. 

2.5 Removing RAID Volumes in UEFI HII 
In a manner much like what was used to create the volume, the process to remove a 
RAID volume is very similar.  
1. As the system is booting, press the appropriate key to enter the Setup Menu. This 

example uses <F2>. 
2. Navigate to EDKII Menu and press <Enter>. 
3. Navigate to Intel Virtual RAID on CPU (Intel® VROC) and press <Enter>. 



Manage Intel® VROC RAID in UEFI HII  

333915  29 

Figure 2-23. Intel Virtual RAID on CPU BIOS Setting 

 

4. Select the RAID volume you want to delete, and press <Enter>.  

Figure 2-24. Intel VROC Managed Volumes 

 

5. Navigate to Delete and press <Enter>, select Yes and press <Enter> to confirm 
the removal of the RAID volume. 



  Manage Intel® VROC RAID in UEFI HII 

30   333915 

Figure 2-25. Confirmation Message to Delete an Intel VROC RAID Volume 

 

§§ 



Installation of Intel® VROC Linux* OS Drivers and Tools  

333915  31 

3 Installation of Intel® VROC 
Linux* OS Drivers and Tools 
Intel® VROC Linux* release strategy is upstream to open-source community and have 
OSV partners to incorporate necessary upstream patches into their Linux* product 
releases to have the inbox support of Intel® VROC. Meanwhile, Intel® may release Intel® 
VROC Linux* update (out-of-box) packages in order to support some old Linux* 
distributions or new features on certain Intel® Xeon platforms. For detailed supported 
OS list, refer to the Intel® Virtual RAID on CPU (Intel® VROC) Supported Configurations.  

This chapter will cover installing of Intel® VROC out-of-box package as well as 
configuring inbox Intel® VROC components in the Intel® VROC supported Linux* 
distributions.  

3.1 Installation of Intel® VROC Linux* Update 
Packages 
For certain Linux* distributions, Intel® may release out-of-box update packages to 
support a full functioning Intel® VROC product. This section illustrates how to install the 
Intel® VROC Linux* out-of-box packages in RHEL OS.  

3.1.1 Installing Intel® VMD Replacement Driver during OS 
Installation 

The Intel® VMD replacement driver is included in the Intel® VROC out-of-box package. 
This replacement driver is used to replace the OS kernel inbox VMD driver to enable or 
improve Intel® VROC functionalities on certain Intel® Xeon platforms.  

The Intel® VMD replacement driver can be installed during the OS installation phase or 
in the OS environment. The following steps illustrate how to install an Intel® VMD 
replacement driver during OS installation. 
1. Prepare USB drives with RHEL installation ISO and Intel® VROC out-of-box driver 

ISO package: 
a. Use the dd command to create an USB drive with RHEL ISO installation: 

# dd if=/path/to/<RHEL_OS>.iso of=/dev/sdX status=progress 

b. Use dd command to create a USB drive with Intel® VROC out-of-box ISO 
package: 

# dd if=/path/to/<vroc_update_driver>.iso of=/dev/sdX status=progress 

c. After the USB drive with the VROC driver is prepared, make sure it has the 
correct label name “OEMDRV”: 

# lsblk -o name,label 
  NAME         LABEL 
  sdb          OEMDRV 

2. Boot your system with the bootable media created in the previous step. When 
booting we will get the below installation screen, select the “Install Red Hat 
Enterprise Linux* 8.5” option and press <E>. 

https://www.intel.com/content/www/us/en/support/articles/000030310.html


 Installation of Intel® VROC Linux* OS Drivers and Tools 

32   333915 

Figure 3-1. Start OS Installation Process 

 
3. Add inst.dd initcall_blacklist=vmd_drv_init to the end of the kernel boot 

command line. Press Ctrl + X to continue with the installation.  

Figure 3-2. Configuring Kernel Boot Parameters 

 
4. Select the driver with label “OEMDRV” in this example. If you don’t see the USB 

device which is named “E”, input <r> to refresh.  

Figure 3-3. Driver Disk Device Selection Before Refresh 

 

After refresh, select the device with label “E”. 



Installation of Intel® VROC Linux* OS Drivers and Tools  

333915  33 

Figure 3-4. Driver Disk Device Selection After Refresh 

 

5. Toggle the kmod-iavmd package, then input <c> to go back to the main menu.  

Figure 3-5. Extracting kmod-iavmd Package 

 

6. At the main menu, type <c> to continue with the installation. 

Figure 3-6. Continue OS Installation 

 

7. Follow the normal RHEL installer guidance to complete the OS installation. 
8. Reboot the system after the installation. Add initcall_blacklist=vmd_drv_init in 

the boot command line before directly booting into the OS. This boot parameter is 
used to tell the OS to blacklist the inbox VMD driver and load the Intel® VMD 
replacement driver. 

9. Select the “Red Hat Enterprise Linux*” option and press <E>. 



 Installation of Intel® VROC Linux* OS Drivers and Tools 

34   333915 

Figure 3-7. Booting Operating System 

 

10. Add initcall_blacklist=vmd_drv_init in the Linux* boot command line, and then 
press Ctrl + X to start. 

Figure 3-8. Configuring OS Boot Parameters 

 

3.1.2 Installing Intel® VROC out-of-box Drivers in Linux* OS 

Section 3.1.1 illustrates the steps to install the Intel® VMD replacement driver during OS 
installation. This section will cover the steps to install the Intel® VMD replacement driver 
as well as other Intel® VROC update packages in the Linux* OS. 
1. Copy the Intel® VROC update package to the target Linux* OS and mount the iso 

image to a certain directory. Enter that directory and you will typically find 3 rpm 
packages as showed in below example. 

# ls -l rpms/x86_64/ 
total 828 
-r--r--r--. 1 root root 328776 Apr  4 07:23 kmod-iavmd-1.0.0.1600-
rhel_85.x86_64.rpm 



Installation of Intel® VROC Linux* OS Drivers and Tools  

333915  35 

-r--r--r--. 1 root root  83860 Apr  4 07:23 ledmon-0.95-
1.Intel®.7468292.el8.x86_64.rpm 
-r--r--r--. 1 root root 431924 Apr  4 07:23 mdadm-4.2-
1.Intel®.9009306.el8.x86_64.rpm 
dr-xr-xr-x. 2 root root   2048 Apr  4 07:23 repodata 

2. Use the rpm -Uvh --force command to install all those packages. See the following 
examples.   
Example 1: This is an example to install the Intel® VMD replacement driver package 
prefixed by “kmod-iavmd-“: 

# rpm -Uvh --force kmod-iavmd-1.0.0.1600-rhel_85.x86_64.rpm 
warning: kmod-iavmd-1.0.0.1600-rhel_85.x86_64.rpm: Header V4 RSA/SHA256 
Signature, key ID c343c1b0: NOKEY 
Verifying...                        ############################### [100%] 
Preparing...                        ############################### [100%] 
Updating / installing... 
   1:kmod-iavmd-1.0.0.1600-rhel_85  ############################### [100%] 

Check the rpm installation status by running the following command:  
# rpm -qa | grep kmod-iavmd 
kmod-iavmd-1.0.0.1600-rhel_85.x86_64 

Example 2: This is an example to install Intel® VROC Linux* update package for the 
mdadm utility.  

# rpm -Uvh --force mdadm-4.2-1.Intel®.9009306.el8.x86_64.rpm  
warning: mdadm-4.2-1.Intel®.9009306.el8.x86_64.rpm: Header V4 RSA/SHA256 
Signature, key ID b7accecb: NOKEY 
Verifying...                         ############################## [100%] 
Preparing...                         ############################## [100%] 
Updating / installing... 
   1:mdadm-4.2-1.Intel®.9009306.el8  ############################## [100%] 

Check the rpm installation status by running the following command:  

# mdadm --version 
mdadm – v4.2 – 2021-12-30 – Intel®_Build: 1.Intel®.9009306.el8 

Example 3: This is an example to install Intel® VROC Linux* update package for 
ledmon utility.  

# rpm -Uvh --force ledmon-0.95-1.Intel®.7468292.el8.x86_64.rpm  
warning: ledmon-0.95-1.Intel®.7468292.el8.x86_64.rpm: Header V4 RSA/SHA256 
Signature, key ID b7accecb: NOKEY 
Verifying...                           ############################ [100%] 
Preparing...                           ############################ [100%] 
Updating / installing... 
   1:ledmon-0.95-1.Intel®.7468292.el8  ############################ [100%] 

Check the rpm installation status by running the following command:  
# ledmon --version 
Intel(R) Enclosure LED Monitor Service 0.95 
Copyright (C) 2009-2021 Intel Corporation. 
 
This is free software; see the source for copying conditions. There is NO 
warranty; 
not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 
 
ledmon[41052] : exit status is STATUS_SUCCESS. 

3. Update the GRUB configuration file to permanently add the following kernel boot 
parameter to allow the OS to automatically load the Intel® VMD replacement driver 
instead of the inbox one.  

initcall_blacklist=vmd_drv_init 

To achieve that, edit the file /etc/default/grub, and add 
initcall_blacklist=vmd_drv_init to the end of the GRUB_CMDLINE_LINUX* line. Take 
the following as an example:  

# vim /etc/default/grub 
GRUB_CMDLINE_LINUX*=”crashkernel=auto resume=/dev/mapper/rhel-swap 
rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet initcall_blacklist=vmd_drv_init” 



 Installation of Intel® VROC Linux* OS Drivers and Tools 

36   333915 

After editing the /etc/default/grub file, regenerate the GRUB configuration file by 
running the following command:  

# grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg 

3.2 Configuring Intel® VROC in Linux* Distributions 
with Inbox Support 

3.2.1 Configuring Intel® VROC in SUSE Linux* Enterprise Server 
(SLES) 15 

3.2.1.1 Installing SLES 15 SP2 onto Intel® VROC RAID 

SLES 15 SP2 installer by default is not able to assemble RAID volumes created in the 
PreOS/UEFI. When installing SLES 15 SP2 onto an Intel® VROC RAID volume, a boot 
command line autoassembly=1 should be added to enable RAID assembly in the installer.  

3.2.1.2 Installing ledmon in SLES Family 

SLES 15 family OSes don’t include the ledmon package in the base OS installation. Users 
should install ledmon manually after the OS installation. Use the following command to 
install ledmon: 

# zypper install ledmon 

3.2.1.3 Enabling ledmon Service 

By default, ledmon service is disabled in every supported Linux* distribution. Users 
should enable it and get it started by running the following command: 

# systemctl enable --now ledmon.service 

Check ledmon service status by running the following command:  

# systemctl status ledmon.service 

§§ 



Intel® VROC RAID Management in Linux*  

333915  37 

4 Intel® VROC RAID Management 
in Linux* 
Intel® VROC RAID management in Linux* is achieved by using Linux* mdadm tool. The 
following sections illustrate the mdadm commands with examples to manage Intel® 
VROC RAID in Linux*. This is not the complete manual for using Linux* mdadm tool. 
Users can reference the manual of mdadm for the complete usage.  

4.1 Examine System’s Intel® VROC RAID Capabilities 
Before using Intel® VROC RAID in Linux*, the first step is to check the supported Intel® 
VROC RAID capability and configurations on the system. Users can use the following 
command to check what Intel® VROC RAID capabilities are supported as well as what 
drives are connected on the system.  

Example 1: Check the platform’s Intel® VROC RAID capability 
# mdadm --detail-platform 
Platform : Intel®(R) Virtual RAID on CPU 
Version : 8.0.0.1304 
RAID Levels : raid0 raid1 raid10 raid5 
Chunk Sizes : 4k 8k 16k 32k 64k 128k 
2TB volumes : supported 
2TB disks : supported 
Max Disks : 8 
Max Volumes : 2 per array, 8 per controller 
I/O Controller : /sys/devices/pci0000:00/0000:00:17.0 (SATA) 
Port7 : /dev/sdj (CVEM948500JX032HGN) 
Port3 : /dev/sdd (PEPR304600TX120LGN) 
Port4 : /dev/sde (BTPR142501MH120LGN) 
Port1 : /dev/sdb (BTPR209202AA120LGN) 
Port5 : /dev/sdf (BTPR147300GW120LGN) 
Port2 : /dev/sdc (BTPR212500QE120LGN) 
Port6 : /dev/sdi (CVEM947301KY032HGN) 
Port0 : /dev/sda (BTPR212500UG120LGN) 
 
[…] 
 
Platform : Intel®(R) Virtual RAID on CPU 
Version : 8.0.0.1304 
RAID Levels : raid0 raid1 raid10 raid5 
Chunk Sizes : 4k 8k 16k 32k 64k 128k 
2TB volumes : supported 
2TB disks : supported 
Max Disks : 48 
Max Volumes : 2 per array, 24 per controller 
3rd party NVMe : supported 
I/O Controller : /sys/devices/pci0000:97/0000:97:00.5 (VMD) 
NVMe under VMD : /dev/nvme11n1 (PHLN843500CR6P4EGN-2) 
NVMe under VMD : /dev/nvme10n1 (PHLN843500CR6P4EGN-1) 
I/O Controller : /sys/devices/pci0000:37/0000:37:00.5 (VMD) 
NVMe under VMD : /dev/nvme1n1 (PHLE7134002M2P0IGN) 
I/O Controller : /sys/devices/pci0000:48/0000:48:00.5 (VMD) 
NVMe under VMD : /dev/nvme3n1 (BTLN90550F7B1P6AGN) 
NVMe under VMD : /dev/nvme2n1 (PHLF730000Y71P0GGN) 
NVMe under VMD : /dev/nvme5n1 (PHLN929100AH1P6AGN) 
NVMe under VMD : /dev/nvme4n1 (BTLF7320075H1P0GGN) 
I/O Controller : /sys/devices/pci0000:59/0000:59:00.5 (VMD) 
NVMe under VMD : /dev/nvme6n1 (PHAB9435004C7P6GGN) 
NVMe under VMD : /dev/nvme9n1 (PHAL02860029800LGN) 



  Intel® VROC RAID Management in Linux* 

38   333915 

NVMe under VMD : /dev/nvme8n1 (PHAC0301009X3P8AGN) 
NVMe under VMD : /dev/nvme7n1 (PHAL029300AE1P6MGN) 
I/O Controller : /sys/devices/pci0000:80/0000:80:00.5 (VMD) 
NVMe under VMD : /dev/nvme12n1 (PHLF64120016480AGN) 

Note: The version represented in this output is the version of the platform’s UEFI Intel® VROC, 
not to be confused with the version of mdadm used.  

The command returns: 

•  Intel® VROC capabilities (supported RAID properties and platform details). 

•  List of I/O controllers associated with Intel® VROC capability. 

•  List of drives associated with I/O controller. 

4.2 Creating Intel® VROC RAID Volume  

Caution: Creating a RAID array will permanently delete any existing data on the selected drives. 
Back up all important data before beginning these steps. 

4.2.1 IMSM Container Device Creation 

To create an Intel® VROC RAID volume, the container device needs to be created first. A 
container is a collection of drives that are managed as a set for RAID volume creation 
with same metadata format. Intel® VROC uses IMSM metadata. A container device with 
IMSM metadata should be created with the following steps. 

Choose the right block device names of the drives that will be used for creating an Intel® 
VROC RAID. For NVMe drives, Intel® VROC supports creating RAID volume on NVMe 
drives attached to different VMD controllers. For SATA drives, Intel® VROC supports 
creating RAID volume on drives attached to the same I/O controller.  

Note: Intel® VROC NVMe RAID spanned across different VMD controllers doesn’t apply to OS 
bootable volume.  

Create IMSM container device. In this example, “imsm0” is the container name that will 
be created under the /dev/md directory.   

Example 2: Create IMSM container 
# mdadm --create /dev/md/imsm0 --metadata=imsm --raid-devices=4 /dev/nvme0n1 /dev/nvme1n1 
/dev/nvme2n1 /dev/nvme3n1 
or, 
# mdadm --create /dev/md/imsm0 --metadata=imsm --raid-devices=4 /dev/nvme[0-3]n1 

The command above creates a RAID container with IMSM metadata format. The device 
node for the container will be /dev/md/imsm0. In this example, drives nvme0n1, nvme1n1 
nvme2n1 and nvme3n1 are used for this RAID container and the total number of drives is 
4.  

Note: The bash wildcard expressions can be used to specify the range of drives for example: 
/dev/nvme[0-3]n1 or /dev/nvme{0,1,2,3}n1. Other examples can be found in the bash 
manual. 

Expected output: 

mdadm: container /dev/md/imsm0 prepared. 



Intel® VROC RAID Management in Linux*  

333915  39 

Note: mdadm is able to detect previously existed metadata on the drives (e.g., GPT) and it 
may ask for confirmation. To avoid that, the option --run can be used. 

Note: The container name (“imsm0” in this example) is not a permanent name. After the 
system reboots, the name will be changed to the default imsmX, where X is the number 
assigned sequentially. The permanent name can be defined in the mdadm.conf 
configuration file.  

4.2.2 RAID Volume Creation 

To create a RAID Volume, the IMSM container device must exist and be active. The 
following command can be used for raid volume creation. In this example a RAID 5 with 
name “volume” is created within the “imsm0” container:  

# mdadm --create /dev/md/volume --level=5 --raid-devices=4 /dev/md/imsm0 

The command creates a RAID 5 volume within container “imsm0”. The RAID 5 volume 
device node, /dev/md/volume in this case, will be created. Four drives (/dev/nvme[0-3]n1) 
assigned to the IMSM container in section 4.2.1 are used for creating the RAID 5 volume 
with all available space by default.  

Expected output: 

mdadm: array /dev/md/volume started. 

4.2.3 Intel® Matrix RAID Volume Creation 

Intel® Matrix RAID is a combination of two RAID volumes inside one RAID container.  
The first step is the same as described in section 4.2.1 to create an IMSM container 
device. After that, the first RAID volume should be created with the --size parameter in 
order to leave free space for the second volume. Both RAID volumes must use the same 
member drives within the IMSM container. 

In this example, a RAID 10 with name “volume0” is created with size of 10GiB, within 
the “imsm0” container: 

# mdadm --create /dev/md/volume0 --level=10 --size=10G --raid-devices=4 /dev/md/imsm0 

Expected output: 

mdadm: array /dev/md/volume0 started. 

Now, the second volume can be created. 

In this example a RAID 5 with name “volume1” is created, within the same “imsm0” 
container. The second RAID 5 volume uses the rest of available space on the drives. 

# mdadm --create /dev/md/volume1 --level=5 --raid-devices=4 /dev/md/imsm0 

Expected output: 

mdadm: array /dev/md/volume1 started. 

4.2.4 RAID Volume Creation Parameters 

There are several optional parameters which can be used during Intel® VROC RAID 
creation. These parameters are tested and verified for Intel® VROC Linux*. The open 



  Intel® VROC RAID Management in Linux* 

40   333915 

source mdadm utility may offer other parameters which may not be compatible with 
Intel® VROC. 

Table 4-1. RAID Volume Creation Customizable Parameters 

Parameter Short 
Version Definition 

--bitmap= -b 
Default is none. 
Can be set to internal to enable internal bitmap feature. 

--chunk= -c 

Specifies chunk (strip) size, in kibibytes by default. Meaningful 
for RAID 0, RAID 5 and RAID 10. Must be power of 2. 
Optimal chunk size should be considered depending on expected 
workload profiles. 

--consistency-
policy= -k 

Meaningful only for RAID 5. Default is resync. 
Can be set to ppl to enable RWH Closure mechanism. 

--force -f 

Used to indicate that non usual operation as intentional. It 
allows to: 
• Create container with one drive. 
• RAID 0 volume with one drive. 

--level= -l Specifies the RAID level. The options supported by Intel® VROC 
RAID are 0, 1, 5, 10. 

--metadata= -e Specifies metadata to be used during creation. Meaningful only 
for container creation. Must be set to imsm. 

--raid-
devices= -n 

Number of devices to be used in the array. Must be set as 
follows: 
• For RAID1 must be set to 2. 
• For RAID10 must be set to 4. 

--run -R Flag used to auto agree if confirmation is required. 

--size= -z 

Specifies the size (by default in kibibyte) of space dedicated on 
each disk to the RAID volume. This must be a multiple of the 
chunk size. By default, all available space will be used. 
Following suffixes can be used to specify the unit of size: 
• M for Megabytes. 
• G for Gigabytes. 
• T for Terabytes. 

Note: Intel® VROC support RAID creation only with names defined as /dev/md/name or just 
name. Other possibilities are not supported and may cause bugs or unproper behavior. 

4.2.5 Additional Intel® VROC RAID Volume Creation Examples 

Example 1: Create a 2-drive RAID 0 volume: 

# mdadm --create /dev/md/imsm0 /dev/nvme[0-1]n1 --raid-devices=2 --metadata=imsm 
# mdadm --create /dev/md/md0 /dev/md/imsm0 --raid-devices=2 --level=0 

Example 2: Create a 1-drive RAID 0 volume with force parameter: 

# mdadm --create /dev/md/imsm0 /dev/nvme0n1 --raid-devices=1 --metadata=imsm --force 
# mdadm --create /dev/md/md0 /dev/md/imsm0 --raid-devices=1 --level=0 --force 



Intel® VROC RAID Management in Linux*  

333915  41 

Example 3: Create a 2-drive RAID 1 volume with 100G size: 

# mdadm --create /dev/md/imsm0 /dev/nvme[0-1]n1 --raid-devices=2 --metadata=imsm 
# mdadm --create /dev/md/md0 /dev/md/imsm0 --raid-devices=2 --level=1 --size=100G 

Example 4: Create a 3-drive RAID 5 volume: 

# mdadm --create /dev/md/imsm0 /dev/nvme[0-2]n1 --raid-devices=3 --metadata=imsm 
# mdadm --create /dev/md/md0 /dev/md/imsm0 --raid-devices=3 --level=5 

Example 5: Create a 3-drive RAID 5 volume with 64k chunk size and PPL enabled: 

# mdadm --create /dev/md/imsm0 /dev/nvme[0-2]n1 --raid-devices=3 --metadata=imsm 
# mdadm --create /dev/md/md0 /dev/md/imsm0 --raid-devices=3 --level=5 --chunk=64 --
consistency-policy=ppl 

Example 6: Create a 4-drive RAID 10 volume: 

# mdadm --create /dev/md/imsm0 /dev/nvme[0-3]n1 --raid-devices=4 --metadata=imsm 
# mdadm --create /dev/md/md0 /dev/md/imsm0 --raid-devices=4 --level=10 

Example 7: Create a 4-drive Intel® Matrix RAID with RAID 5 and RAID 10 volumes: 

# mdadm --create /dev/md/imsm0 /dev/nvme[0-3]n1 --raid-devices=4 --metadata=imsm 
# mdadm --create /dev/md/md0 /dev/md/imsm0 --raid-devices=4 --level=5 --size=100G 
# mdadm --create /dev/md/md1 /dev/md/imsm0 --raid-devices=4 --level=10 

4.3 Reporting Intel® VROC RAID Information 
After an Intel® VROC RAID volume is created, there are multiple ways to get information 
of RAID volumes in Linux*. This section will show some basic methods to check and get 
Intel® VROC RAID information. 

4.3.1 Block Device of Intel® VROC RAID Volume 

After creating an Intel® VROC RAID container or volume device, the Linux* block device 
is created under the /dev directory with name mdXXX, where XXX is the number allocated 
automatically starting from 127. The user defined name specified when creating the 
RAID will be represented in the /dev/md directory as a symbolic link to the /dev/mdXXX 
block device. The following is the example of RAID container and volume devices named 
as “imsm” and “volume”, which are linked to /dev/md127 and /dev/md126 block devices 
respectively.  

# ls -l /dev/md 
total 0 
lrwxrwxrwx. 1 root root 8 May 25 15:03 imsm -> ../md127 
lrwxrwxrwx. 1 root root 8 May 25 15:03 volume -> ../md126 

Note: The /dev/mdXXX block device name is not a persistent name. The XXX number may 
change after system reboots. User defined name in the /dev/md directory can be 
persistent when a configuration file is created with the specific array name defined. For 
details, see Section 4.4 Creating RAID Configuration File. 

Note: After creating an Intel® VROC RAID volume device, the block device of the RAID 
member drive is still visible and accessible to the user. For that reason, other system 
utilities (e.g., lsblk) may export the device to the user. This is the current Intel® VROC 
Linux* product design.  



  Intel® VROC RAID Management in Linux* 

42   333915 

4.3.2 Retrieve RAID Status through /proc/mdstat 

/proc/mdstat is a Linux* special file for the user to read the status of all the containers 
and RAID volumes in the system.  

# cat /proc/mdstat 
Personalities : [raid6] [raid5] [raid4] [raid1] 
md126 : active raid5 nvme6n1[3] nvme5n1[2] nvme4n1[1] nvme3n1[0] 
      125958144 blocks super external:/md127/0 level 5, 128k chunk, algorithm 0 [4/4] 
[UUUU] 
 
md127 : inactive nvme6n1[3](S) nvme3n1[2](S) nvme5n1[1](S) nvme4n1[0](S) 
      4420 blocks super external:imsm 
 
unused devices: <none> 

In the above example, the content of /proc/mdstat is presented with Intel® VROC RAID 
5 volume (md126) and Intel® VROC IMSM container (md127). Here are some 
explanations of each field displayed on the md126 and md127 devices.  

Table 4-2. Explanation of md126 Global Properties  

md126: active raid5 nvme6n1[3] nvme5n1[2] 
nvme4n1[1] nvme3n1[0] 

MD block device 
name 

Array state RAID Level 5 RAID Volume member devices 

Table 4-3. Explanation of md126 Additional Properties 

125958144 
blocks 

super 
external:/md127/0 

level 5 128k 
chunk 

algorithm 0 [4/4] [UUUU] 

Volume size 
in sectors. 

RAID metadata 
details with container 

name and array 
index. 

RAID 
level 5 

Chunk 
size 

Additional information about 
member disk availability 

Note: Some parameters printed in /proc/mdstat are determined by the Linux* MD RAID 
personality, which could be different across different RAID levels. 

The next md127 is the container device, which just represents the metadata. Intel® 
VROC RAID uses IMSM metadata. This can be determined by the string super 
external:imsm printed out in the second line of md127.  

4.3.3 Extracting detailed RAID information 

The mdadm utility offers a special command to extract all RAID array information from 
the system. To extract all RAID details the following command is used:  

# mdadm --detail /dev/md126 
/dev/md126: 
         Container : /dev/md/imsm0, member 0 
        Raid Level : raid5 
        Array Size : 7814025216 (7.28 TiB 8.00 TB) 
     Used Dev Size : 3907012608 (3.64 TiB 4.00 TB) 
      Raid Devices : 3 
     Total Devices : 3 
 
             State : clean 



Intel® VROC RAID Management in Linux*  

333915  43 

    Active Devices : 3 
   Working Devices : 3 
    Failed Devices : 0 
     Spare Devices : 0 
 
            Layout : left-asymmetric 
        Chunk Size : 128K 
 
Consistency Policy : resync 
 
 
              UUID : 3228d4e1:d3d49830:2e9694c9:a2512524 
    Number   Major   Minor   RaidDevice State 
       0     259        0        0      active sync   /dev/nvme1n1 
       1     259        3        1      active sync   /dev/nvme3n1 
       2     259        1        2      active sync   /dev/nvme2n1 

4.3.4 Reading Intel® VROC RAID Metadata 

When an Intel® VROC RAID is created, IMSM metadata is stored on each RAID member 
disk. The Linux* blkid utility can understand IMSM metadata, and display drives with 
IMSM metadata as isw_raid_member. The following is an example showing four NVMe 
devices with IMSM metadata stored.  

# blkid 
/dev/nvme3n1: TYPE="isw_raid_member" 
/dev/nvme4n1: TYPE="isw_raid_member" 
/dev/nvme5n1: TYPE="isw_raid_member" 
/dev/nvme6n1: TYPE="isw_raid_member" 

The user can also read RAID metadata directly on the container device or any RAID 
member disk, by using the command mdadm --examine. The following is an example of 
reading IMSM metadata from the /dev/nvme1n1 device, which is a RAID member disk of 
a 3 disk RAID 5 volume with name of “vol0” and subarray ID 0.  

# mdadm --examine /dev/nvme1n1 
/dev/nvme1n1: 
          Magic : Intel® Raid ISM Cfg Sig. 
        Version : 1.3.00 
    Orig Family : 7fbd42b1 
         Family : 7fbd42b1 
     Generation : 00000002 
  Creation Time : Wed Jul 20 02:01:37 2022 
     Attributes : All supported 
           UUID : b6232adc:c3658d33:54b04b77:6cffcdac 
       Checksum : 334dcb79 correct 
    MPB Sectors : 2 
          Disks : 3 
   RAID Devices : 1 
 
  Disk00 Serial : LJ832405AB4P0DGN 
          State : active 
             Id : 00000000 
    Usable Size : 7814026766 (3.64 TiB 4.00 TB) 
 
[vol0]: 
       Subarray : 0 
           UUID : 3228d4e1:d3d49830:2e9694c9:a2512524 
     RAID Level : 5 
        Members : 3 
          Slots : [UUU] 
    Failed disk : none 
      This Slot : 0 
    Sector Size : 512 



  Intel® VROC RAID Management in Linux* 

44   333915 

     Array Size : 15628050432 (7.28 TiB 8.00 TB) 
   Per Dev Size : 7814027264 (3.64 TiB 4.00 TB) 
  Sector Offset : 0 
    Num Stripes : 30523536 
     Chunk Size : 128 KiB 
       Reserved : 0 
  Migrate State : idle 
      Map State : normal 
    Dirty State : clean 
     RWH Policy : off 
      Volume ID : 1 
 
  Disk01 Serial : LJ832405HG4P0DGN 
          State : active 
             Id : 00000000 
    Usable Size : 7814026766 (3.64 TiB 4.00 TB) 
 
  Disk02 Serial : LJ832405AC4P0DGN 
          State : active 
             Id : 00000000 
    Usable Size : 7814026766 (3.64 TiB 4.00 TB) 

4.4 Creating Intel® VROC RAID Configuration File 
After creating RAID volumes, it is necessary to create the configuration file to record the 
existing RAID volumes’ information as well as adding specific RAID management 
policies. This configuration file allows a consistent RAID volume naming in /dev/md after 
system reboots. This reliable and constant name can be used for system auto-
configuration (e.g., in /etc/fstab for automounting). The MD device nodes in /dev are 
not consistent and may change depend on system enumeration.  

The following command extracts system RAID volume information and stores it to the 
configuration file /etc/mdadm.conf.  

# mdadm -Ebs > /etc/mdadm.conf 

The configuration file is typically stored at the default location of /etc/mdadm.conf. 
Depending on the OS distribution, there may be different file locations and alternative 
means of saving the configuration file. It is important to reference the mdadm.conf man 
page to determine what applies to your distribution.  

4.5 Intel® VROC RAID Volume Initialization/Resync 
Immediately after a RAID volume has been created, initialization (or resync) commences 
if the RAID level is 1, 10, or 5. During this time, any data stored on RAID level 5 
volumes are not guaranteed to be safe if failure occurs. If a drive failure happens during 
the initialization time, recovery will not be possible. This scenario is also true during 
RAID volume rebuilds. 

4.5.1 Adjusting Initialization/Resync Speed 

Linux* by default has a maximum speed of 200MB as the limitation for volume 
initialization and rebuilding. This was the community standard set based on spinning 
platter based hard drives. A consensus has not been reached regarding what the 
standard should be moved to with the advancements in technology.  



Intel® VROC RAID Management in Linux*  

333915  45 

This value can be modified to prevent the system from taking an undue amount of time 
initializing or rebuilding a RAID array on modern storage drives. The series of commands 
below shows a system that is set at the default value, and how that may be modified. 

To see what the current rate of speed the system is using: 

# cat /sys/block/md0/md/sync_speed_max 
200000(system) 

To modify this to a higher value, such as 5GB for NVMe drives: 

# echo 5000000 > /sys/block/md0/md/sync_speed_max  

Note: Different values may be appropriate for different drive types. 5GB is reasonable for 
typical Data Center NVMe SSD models. 

4.6 Adding a Hot Spare Drive 
Adding a hot spare drive allows for immediate reconstruction of the RAID volume when 
a device failure is detected. mdadm will mark the failed device as “bad” and start 
reconstruction with the first available hot spare drive. The hot spare drive can also be 
used for RAID volume’s capacity expansion (refer to Section 6.5 Online Capacity 
Expansion for more information). The hot spare drives sit idle during normal operations. 
Intel® VROC Linux* RAID is using mdadm with IMSM metadata, the hot spare drive 
added to a container is dedicated to that specific container. The following command adds 
a hot spare drive to the designated container /dev/md/imsm0. 

# mdadm --add /dev/md/imsm0 /dev/<nvmeXn1> 

Note: The metadata UUID for the member drive inside the container as a hot spare will keep 
being all zero until the drive is re-assigned to be part of the RAID volume. A hot spare 
drive with zero UUID may be allocated to a separate container after system reboots.   

Note: It is recommended to add hot spare drive one by one separately, due to a known 
limitation of the mdadm tool that multiple hot spare drives may not be properly added in 
one command.  

4.7 Configuring Global Hot Spare 
By default, the Intel® VROC Linux* RAID hot spare drive is dedicated to a specific 
container. Only the Intel® VROC RAID volumes inside that container can be 
automatically reconstructed to the hot spare drive when redundant RAID volume is 
degraded. Intel® VROC Linux* RAID allows configuring a global hot spare drive that can 
be used by any degraded Intel® VROC RAID volume on the system for automatic 
recovery (rebuilding).  

The following command adds the policy with the same domain and the same action for 
all drives to the mdadm configuration file, which enables the global hot spare function 
that allows the spare drives to move from one container to another for rebuilding: 

# echo "POLICY domain=DOMAIN path=* metadata=imsm action=spare-same-slot" >> 
/etc/mdadm.conf 

After configuring the policy in the configuration file, the mdmonitor service should be 
restarted to take effect. Refer to Section 5.2.2 for command details to restart the 
mdmonitor service.  



  Intel® VROC RAID Management in Linux* 

46   333915 

4.8 Removing Intel® VROC RAID Volumes  
Completely removing Intel® VROC RAID in Linux* requires several steps. The following 
sections illustrate the mdadm commands to stop and remove an Intel® VROC RAID 
volume in Linux*.  

4.8.1 Stopping RAID Volume and Container 

The first step is to stop the RAID volume and container devices.  

Stopping RAID volume or container is basically removing the Linux* MD block device. 
The Intel® VROC RAID metadata remains on the RAID member drive and the RAID 
volume can be assembled again. Intel® VROC RAID volume can be stopped only if it is 
not in use (for example a filesystem is mounted). The Intel® VROC RAID container 
device can be stopped only if no member RAID volume is active.   

The following command can be used to stop the RAID volume or container device: 

# mdadm --stop /dev/md/name 

Expected result: 

mdadm: stopped /dev/md/name 

Multiple MD devices can be passed to the command mdadm --stop, each one will be 
stopped individually. The sequence of multiple MD devices should matter.    

# mdadm --stop /dev/md126 /dev/md127 
mdadm: stopped /dev/md126 
mdadm: stopped /dev/md127 

To stop all active RAID volumes in the system, the following command can be used. 
mdadm will scan for and stop all running RAID volumes and containers. 

# mdadm --stop --scan 

4.8.2 Erasing RAID Metadata 

Once the Intel® VROC RAID volume and container devices are stopped correctly, the 
next step to completely remove Intel® VROC RAID in Linux* is to erase Intel® VROC 
RAID metadata. Having incorrect or bad metadata can cause RAID volumes to be 
assembled incorrectly. The metadata can be erased on each potential member drive with 
the following command to ensure the drive is clean. This operation does not attempt to 
wipe existing user data but, will delete an array if it’s a current member drive or spare 
drive. The RAID volumes and container must be stopped and deactivated to run the 
erase operation.  

# mdadm --zero-superblock /dev/<nvmeXn1> 

Multiple drives can be specified to clear the superblock at the same time. 

Caution: The metadata erase operation is irreversible and may ruin the RAID volume. Run this 
operation with caution.  



Intel® VROC RAID Management in Linux*  

333915  47 

4.8.3 Removing One RAID Volume of Intel® Matrix RAID 

Intel® Matrix RAID contains two RAID volumes inside one container. This requires a little 
more care to remove one of the RAID volumes.  

First, both RAID volumes in the Intel® VROC Matrix RAID must be stopped. The 
following example shows how to stop the Intel® VROC RAID volumes “vol0” and “vol1”.  

# mdadm --stop /dev/md/vol0 
# mdadm --stop /dev/md/vol1 

Next, erase the volume metadata to completely remove the volume. The following 
example shows how to remove the first RAID volume inside the Intel® Matrix RAID 
(“imsm0”).  

# mdadm --kill-subarray=0 /dev/md/imsm0 

Note: --kill-subarray expects the volume index, which should be either 0 or 1 to represent 
the first or second volume. Refer to Section 4.3.4 to get the volume’s subarray index 
from RAID metadata.  

Note: The RAID volume UUID and index will be changed after subarray deletion. If user 
deletes index 1 subarray, index 0 will keep in the container. If user deletes index 0 
subarray, index 1 will become index 0 after deletion.  

4.9 Assembling Intel® VROC RAID Volumes 
Intel® VROC RAID volumes can be assembled and activated using the mdadm utility.   

The following command by default scans for the mdadm configuration file at 
/etc/mdadm.conf in order to assemble the RAID volumes. If the configuration file is not 
found, it scans all available drives for RAID members and assembles all the RAID 
volumes. In this case, the RAID volume name under the /dev/md directory will be added 
“_0” as suffix. 
# mdadm --assemble --scan 

Note: If the configuration file exists with wrong or empty RAID volume/container device 
information, mdadm will refuse to assemble it.  

To manually assemble and activate RAID volumes without the configuration file, the 
following steps can be used.  

First, assemble the container device. The following example assembles the container 
device /dev/md/md0 using the provided list of drives.  

# mdadm --assemble /dev/md/md0 --metadata=imsm /dev/<member drives> 

Then, assemble the RAID volume. The following example shows the assembling of the 
RAID volume /dev/md/md0 within container /dev/md/imsm0.  

# mdadm --assemble /dev/md/md0 /dev/md/imsm0 



  Intel® VROC RAID Management in Linux* 

48   333915 

4.10 Creating File System on an Intel® VROC RAID 
Volume 
After the RAID volume has been created, a file system can be created to allow the 
mounting of the RAID volume. The Linux* mkfs utility can be used to create the 
filesystem. The following example shows how an EXT4 filesystem is created on an Intel® 
VROC RAID volume “md0”. 

# mkfs.ext4 /dev/md/md0 

After the file system has been created, it can be mounted to the location of choice. For 
example, mount the “md0” volume to the /mnt/data directory.  

# mount /dev/md/md0 /mnt/data 

When configuring the Linux filesystem table (aka fatab or “/etc/fstab” file) for 
automount of a filesystem on boot, it is worth mentioning a best practice to add 
“_netdev” or “noauto,x-systemd.automount” option for mounting the filesystem onto 
the Intel®  VROC RAID volume.  Those two options are intended to delay the mount 
attempt slightly in order to make more time for the RAID member disks and RAID 
volume device being discovered and ready before systemd tries to mount the 
filesystem.  

Followings are two examples of adding “_netdev” and “noauto,x-systemd.automount” 
options in the “/etc/fstab” file.  

Option 1: Add “_netdev” mount option:  

UUID=”c2c9651c-bd6c-4f61-ae9d-2b9dd0fca524” /data/vroc/raid10 ext4 defaults,_netdev 0 0 

Option 2: Add “noauto,x-systemd.automount” mount option: 

UUID=”c2c9651c-bd6c-4f61-ae9d-2b9dd0fca524” /data/vroc/raid10 ext4 defaults,noauto,x-
systemd.automount 0 0 

4.11 Removing an Active Intel® VROC RAID Member 
Disk 
Intel® VROC Linux* allows users to hot remove an active drive from a RAID volume. 
Intel® VROC Linux* supports the surprise hot removal of the physical drive directly from 
the system without any advance notice to the system. The RAID state will become either 
degraded or failed depending on the RAID level after removing the RAID member disk. If 
a RAID volume is failed, the RAID volume logical device will be removed from Linux* 
and it will not be assembled after system reboots.  

As for RAID levels with data redundancy (RAID level 1/5/10), Intel® VROC Linux* also 
supports a more graceful way to remove an active RAID member disk. This basically 
requires two steps to remove an active drive from the RAID volume and container.  
1. Mark the drive as faulty from the volume. The following command marks the drive 

nvme0n1 as faulty in the Intel® VROC RAID volume /dev/md/volume0. The faulty drive 
still stays in the container but not in the RAID volume.  

# mdadm --fail /dev/md/volume0 /dev/nvme0n1 

2. Remove the faulty drive from the container. The following command needs to be 
executed.  

# mdadm --remove /dev/md/imsm0 /dev/nvme0n1 

Once the logical drive is removed from the Intel® VROC RAID volume with the 
commands above, the user can remove the physical drive from the system safely. 



Intel® VROC RAID Management in Linux*  

333915  49 

Note: Intel® VROC Linux* only allows the user to mark the drive as faulty from the redundant 
RAID volume which is not in the degraded (or double degraded as for RAID 10) mode. In 
other words, Intel® VROC Linux* prevents the user from failing a RAID volume. 

4.12 Recovery of Intel® VROC RAID Volumes 
Recovery is one of the most important aspects of using RAID. It allows rebuilding of 
redundant RAID volumes on a system when a drive failure occurs. Recovery is only 
possible in the case of the following RAID levels: 1, 5, and 10. General recovery is 
possible if no more than one drive fails. However, in the case of RAID 10, recovery may 
be possible even if two out of four drives fail if the two failed drives are members of two 
different mirrored pairs. If both drives of one mirror fail, recovery of RAID 10 is not 
possible. 

Intel® VROC supports multiple scenarios of recovering a degraded RAID volume.  

4.12.1 Auto Rebuilding to a Hot Spare 

If there are spare drives available in the container, rebuild of the RAID volume would 
automatically commence. The following example shows how a degraded RAID 5 volume 
is automatically rebuilding (resyncing) to the hot spare drive (nvme2n1) pre-configured in 
the container.  

/proc/mdstat is showing the recovery progress as well as the resync speed.  

# cat /proc/mdstat 
Personalities : [raid1] [raid6] [raid5] [raid4] [raid0] [raid10] 
md126 : active raid5 nvme2n1[3] nvme3n1[2] nvme1n1[0] 
      209715200 blocks super external:/md127/0 level 5, 128k chunk, algorithm 0 [3/2] [U_U] 
      [=>...................]  recovery =  9.0% (9460412/104857600) finish=1.1min 
speed=1351487K/sec 
 
md127 : inactive nvme3n1[3](S) nvme2n1[2](S) nvme1n1[1](S) nvme0n1[0](S) 
      4420 blocks super external:imsm 
 
unused devices: <none> 

The details of the RAID volume also show the rebuilding/recovering progress onto the 
spare drive /dev/nvme2n1. 

# mdadm --detail /dev/md126 
/dev/md126: 
         Container : /dev/md/imsm0, member 0 
        Raid Level : raid5 
        Array Size : 209715200 (200.00 GiB 214.75 GB) 
     Used Dev Size : 104857600 (100.00 GiB 107.37 GB) 
      Raid Devices : 3 
     Total Devices : 3 
 
             State : clean, degraded, recovering 
    Active Devices : 2 
   Working Devices : 3 
    Failed Devices : 0 
     Spare Devices : 1 
 
            Layout : left-asymmetric 
        Chunk Size : 128K 
 
Consistency Policy : resync 
 
    Rebuild Status : 24% complete 



  Intel® VROC RAID Management in Linux* 

50   333915 

 
 
              UUID : 162f6668:62b72484:f692ed54:cf74395e 
    Number   Major   Minor   RaidDevice State 
       0     259        1        0      active sync   /dev/nvme1n1 
       3     259        2        1      spare rebuilding   /dev/nvme2n1 
       2     259        5        2      active sync   /dev/nvme3n1 

If there is no spare drive pre-configured in the container, a spare drive can also be 
manually added to start the rebuild process. Refer to the Section 4.6 Adding a Hot Spare 
Drive for details of how to add a spare drive. The following example shows how a 
degraded RAID 5 volume md126 starts rebuilding to the hot spare drive (/dev/nvme0n1) 
automatically when it is manually added.  

# mdadm --detail /dev/md126 
/dev/md126: 
         Container : /dev/md/imsm0, member 0 
        Raid Level : raid5 
        Array Size : 209715200 (200.00 GiB 214.75 GB) 
     Used Dev Size : 104857600 (100.00 GiB 107.37 GB) 
      Raid Devices : 3 
     Total Devices : 2 
 
             State : clean, degraded 
    Active Devices : 2 
   Working Devices : 2 
    Failed Devices : 0 
     Spare Devices : 0 
 
            Layout : left-asymmetric 
        Chunk Size : 128K 
 
Consistency Policy : resync 
 
 
              UUID : 162f6668:62b72484:f692ed54:cf74395e 
    Number   Major   Minor   RaidDevice State 
       0     259        1        0      active sync   /dev/nvme1n1 
       3     259        2        1      active sync   /dev/nvme2n1 
       -       0        0        2      removed 
[root@localhost Intel®]# mdadm --add /dev/md127 /dev/nvme0n1 
mdadm: added /dev/nvme0n1 
[root@localhost Intel®]# mdadm --detail /dev/md126 
/dev/md126: 
         Container : /dev/md/imsm0, member 0 
        Raid Level : raid5 
        Array Size : 209715200 (200.00 GiB 214.75 GB) 
     Used Dev Size : 104857600 (100.00 GiB 107.37 GB) 
      Raid Devices : 3 
     Total Devices : 3 
 
             State : clean, degraded, recovering 
    Active Devices : 2 
   Working Devices : 3 
    Failed Devices : 0 
     Spare Devices : 1 
 
            Layout : left-asymmetric 
        Chunk Size : 128K 
 
Consistency Policy : resync 
 
    Rebuild Status : 2% complete 
 
 
              UUID : 162f6668:62b72484:f692ed54:cf74395e 



Intel® VROC RAID Management in Linux*  

333915  51 

    Number   Major   Minor   RaidDevice State 
       0     259        1        0      active sync   /dev/nvme1n1 
       3     259        2        1      active sync   /dev/nvme2n1 
       4     259        6        2      spare rebuilding   /dev/nvme0n1 

4.12.2 Auto Rebuilding to a New Drive 

There is a scenario when a failed RAID member drive is replaced with a brand-new 
drive, it can be configured for the degraded RAID volume to start rebuilding 
automatically when the brand-new drive is hot inserted to the same slot of the failed 
drive being replaced. To enable this auto-rebuilding scenario, the following steps should 
be performed. 
1. Follow the instructions from Section 4.7 to configure global hot spare policy in the 

mdadm configuration file, which allows the spare to move from one container to 
another for rebuilding. 

Note: The users need to specify the MAILADDR in the mdadm configuration file in order to run 
the mdmonitor service (simply run the command #echo “MAILADDR root” >> 
/etc/mdadm.conf). 

The configuration file in /etc/mdadm.conf will look similar to the following: 
ARRAY metadata=imsm UUID=60582f12:51325766:88172a8a:8424eb16   spares=1 
ARRAY /dev/md/1 container=60582f12:51325766:88172a8a:8424eb16 member=0 
UUID=0467835f:e74cb807:0c7b1fe2:84ccf80c 
ARRAY metadata=imsm UUID=a4a1b4a1:23f34684:de07ba5b:328edbee 
ARRAY /dev/md/2 container=a4a1b4a1:23f34684:de07ba5b:328edbee member=0 
UUID=39964136:f3fd21ae:e3cf676c:8f73b3fa 
POLICY domain=DOMAIN path=* metadata=imsm action=spare-same-slot 

2. Follow the below two commands to generate the appropriate udev rules after 
changing the mdadm configuration file, and reload the udev rules to make it take 
effect.  

# mdadm --udev-rules > /etc/udev/rules.d/65-md-bare.rules 
# udevadm control --reload 

3. The generated udev rule will be added and look like this: 
# ACTION=="add", SUBSYSTEM=="block", ENV{ID_PATH}=="*", RUN+="/sbin/mdadm --incremental 
$env{DEVNAME}" 

4. Make sure the mdmonitor service is running. Refer to the Section 5.2.2 for 
commands to check the service status and get it started if it is not running.  

Now, it is well configured to enable the auto rebuilding to a new drive when it is hot 
inserted to replace the failed RAID member drive.  

Note: The new disk must be “bare”. That means that at least the first and last 4KB space must 
be all zero. Users can follow the below example to make the NVMe disk nvme0n1 as the 
“bare” drive.  

# dd if=/dev/zero of=/dev/nvme0n1 bs=512 count=8 oflag=direct 
# dd if=/dev/zero of=/dev/nvme0n1 bs=512 count=8 seek=$(($(cat /sys/block/nvme0n1/size) - 
8)) oflag=direct 

§§ 



 Intel® VROC RAID Logging and Monitoring in Linux* 

52   333915 

5 Intel® VROC RAID Logging and 
Monitoring in Linux* 

5.1 Intel® VROC RAID Logging in Linux* 
Various messages coming from the MDRAID subsystem in the kernel are logged. 
Typically, the messages are stored in the kernel logging and system log file 
/var/log/messages in popular Linux* distributions with other kernel status, warning, and 
error outputs.  

5.1.1 Use “demsg” to Retrieve Kernel Logging 

Below is an example snippet of what the kernel log may look like: 

# dmesg 
[Thu Aug  4 09:19:52 2022] md/raid1:md126: not clean -- starting background reconstruction 
[Thu Aug  4 09:19:52 2022] md/raid1:md126: active with 2 out of 2 mirrors 
[Thu Aug  4 09:19:52 2022] md126: detected capacity change from 0 to 107374182400 
[Thu Aug  4 09:19:52 2022] md: resync of RAID array md126 
[Thu Aug  4 09:21:36 2022] md: md126: resync done. 
[Thu Aug  4 09:21:43 2022] md126: detected capacity change from 107374182400 to 0 
[Thu Aug  4 09:21:43 2022] md: md126 stopped. 
[Thu Aug  4 09:21:43 2022] md: md126 stopped. 
[Thu Aug  4 09:21:43 2022] md: md127 stopped. 
[Thu Aug  4 09:23:14 2022] md126: detected capacity change from 0 to 16003123642368 
[Thu Aug  4 09:23:38 2022] md126: detected capacity change from 16003123642368 to 0 
[Thu Aug  4 09:23:38 2022] md: md126 stopped. 
[Thu Aug  4 09:23:38 2022] md: md127 stopped. 
[Fri Aug  5 01:52:54 2022] md/raid:md126: not clean -- starting background reconstruction 
[Fri Aug  5 01:52:54 2022] md/raid:md126: device nvme3n1 operational as raid disk 2 
[Fri Aug  5 01:52:54 2022] md/raid:md126: device nvme0n1 operational as raid disk 1 
[Fri Aug  5 01:52:54 2022] md/raid:md126: device nvme1n1 operational as raid disk 0 
[Fri Aug  5 01:52:54 2022] md/raid:md126: raid level 5 active with 3 out of 3 devices, 
algorithm 0 
[Fri Aug  5 01:52:54 2022] md126: detected capacity change from 0 to 214748364800 
[Fri Aug  5 01:52:54 2022] md: resync of RAID array md126 
[Fri Aug  5 01:54:36 2022] md: md126: resync done. 
[Fri Aug  5 01:54:54 2022] md/raid:md126: Disk failure on nvme0n1, disabling device. 
                           md/raid:md126: Operation continuing on 2 devices. 
[Fri Aug  5 01:54:54 2022] md: recovery of RAID array md126 
[Fri Aug  5 01:56:41 2022] md: md126: recovery done. 
[Fri Aug  5 02:00:20 2022] md/raid:md126: Disk failure on nvme3n1, disabling device. 
                           md/raid:md126: Operation continuing on 2 devices. 
[Fri Aug  5 02:00:50 2022] md: recovery of RAID array md126 
[Fri Aug  5 02:02:46 2022] md: md126: recovery done. 

5.1.2 Use “journalct” to Retrieve System Journal Logs 

Below is an example snippet of what the journal log may look like: 

Aug 05 01:52:55 localhost.localdomain kernel: md/raid:md126: not clean -- starting 
background reconstruction 
Aug 05 01:52:55 localhost.localdomain kernel: md/raid:md126: device nvme3n1 operational as 
raid disk 2 
Aug 05 01:52:55 localhost.localdomain kernel: md/raid:md126: device nvme0n1 operational as 
raid disk 1 



Intel® VROC RAID Logging and Monitoring in Linux*  

333915  53 

Aug 05 01:52:55 localhost.localdomain kernel: md/raid:md126: device nvme1n1 operational as 
raid disk 0 
Aug 05 01:52:55 localhost.localdomain kernel: md/raid:md126: raid level 5 active with 3 out 
of 3 devices, algorithm 0 
Aug 05 01:52:55 localhost.localdomain kernel: md126: detected capacity change from 0 to 
214748364800 
Aug 05 01:52:55 localhost.localdomain systemd[1]: Starting MD Metadata Monitor on 
/dev/md127... 
Aug 05 01:52:55 localhost.localdomain systemd[1]: Started MD Metadata Monitor on 
/dev/md127. 
Aug 05 01:52:55 localhost.localdomain kernel: md: resync of RAID array md126 
Aug 05 01:52:58 localhost.localdomain dhclient[6077]: DHCPDISCOVER on ens785f1 to 
255.255.255.255 port 67 interval 3 (xid=0x3b9ab34d) 
Aug 05 01:53:01 localhost.localdomain dhclient[6077]: DHCPDISCOVER on ens785f1 to 
255.255.255.255 port 67 interval 5 (xid=0x3b9ab34d) 
Aug 05 01:53:06 localhost.localdomain dhclient[6077]: DHCPDISCOVER on ens785f1 to 
255.255.255.255 port 67 interval 8 (xid=0x3b9ab34d) 
Aug 05 01:53:14 localhost.localdomain dhclient[6077]: DHCPDISCOVER on ens785f1 to 
255.255.255.255 port 67 interval 15 (xid=0x3b9ab34d) 
Aug 05 01:53:29 localhost.localdomain dhclient[6077]: DHCPDISCOVER on ens785f1 to 
255.255.255.255 port 67 interval 21 (xid=0x3b9ab34d) 
Aug 05 01:53:50 localhost.localdomain dhclient[6077]: DHCPDISCOVER on ens785f1 to 
255.255.255.255 port 67 interval 9 (xid=0x3b9ab34d) 
Aug 05 01:53:59 localhost.localdomain dhclient[6077]: No DHCPOFFERS received. 
Aug 05 01:53:59 localhost.localdomain dhclient[6077]: No working leases in persistent 
database - sleeping. 
Aug 05 01:54:37 localhost.localdomain kernel: md: md126: resync done. 
Aug 05 01:54:55 localhost.localdomain kernel: md/raid:md126: Disk failure on nvme0n1, 
disabling device. 
                                              md/raid:md126: Operation continuing on 2 
devices. 
Aug 05 01:54:55 localhost.localdomain udisksd[2823]: Unable to resolve 
/sys/devices/virtual/block/md126/md/dev-nvme0n1/block symlink 
Aug 05 01:54:55 localhost.localdomain kernel: md: recovery of RAID array md126 

5.1.3 Use Syslog File: /var/log/messages 

Below is an example snippet of what the log may look like in /var/log/messages: 

Aug  4 09:05:10 localhost kernel: md126: detected capacity change from 0 to 16003123642368 
Aug  4 09:05:23 localhost kernel: md126: detected capacity change from 16003123642368 to 0 
Aug  4 09:05:23 localhost kernel: md: md126 stopped. 
Aug  4 09:05:23 localhost kernel: md: md127 stopped. 
Aug  4 09:06:56 localhost kernel: md/raid:md126: not clean -- starting background 
reconstruction 
Aug  4 09:06:56 localhost kernel: md/raid:md126: device nvme2n1 operational as raid disk 3 
Aug  4 09:06:56 localhost kernel: md/raid:md126: device nvme3n1 operational as raid disk 2 
Aug  4 09:06:56 localhost kernel: md/raid:md126: device nvme0n1 operational as raid disk 1 
Aug  4 09:06:56 localhost kernel: md/raid:md126: device nvme1n1 operational as raid disk 0 
Aug  4 09:06:56 localhost kernel: md/raid:md126: raid level 5 active with 4 out of 4 
devices, algorithm 0 
Aug  4 09:06:56 localhost kernel: md126: detected capacity change from 0 to 322122547200 
Aug  4 09:06:56 localhost systemd[1]: Starting MD Metadata Monitor on /dev/md127... 
Aug  4 09:06:56 localhost systemd[1]: Started MD Metadata Monitor on /dev/md127. 
Aug  4 09:06:56 localhost kernel: md: resync of RAID array md126 
Aug  4 09:09:15 localhost kernel: md: md126: resync done. 
Aug  4 09:09:24 localhost kernel: md126: detected capacity change from 322122547200 to 0 
Aug  4 09:09:24 localhost kernel: md: md126 stopped. 
Aug  4 09:09:24 localhost systemd[1]: mdmon@md127.service: Succeeded. 
Aug  4 09:09:24 localhost kernel: md: md126 stopped. 
Aug  4 09:09:24 localhost kernel: md: md127 stopped. 
Aug  4 09:10:23 localhost kernel: md/raid10:md126: not clean -- starting background 
reconstruction 
Aug  4 09:10:23 localhost kernel: md/raid10:md126: active with 4 out of 4 devices 
Aug  4 09:10:23 localhost kernel: md126: detected capacity change from 0 to 214748364800 
Aug  4 09:10:23 localhost systemd[1]: Starting MD Metadata Monitor on /dev/md127... 



 Intel® VROC RAID Logging and Monitoring in Linux* 

54   333915 

Aug  4 09:10:23 localhost systemd[1]: Started MD Metadata Monitor on /dev/md127. 
Aug  4 09:10:23 localhost kernel: md: resync of RAID array md126 
Aug  4 09:12:00 localhost kernel: md: md126: resync done. 
Aug  4 09:16:32 localhost kernel: md126: detected capacity change from 214748364800 to 0 
Aug  4 09:16:32 localhost kernel: md: md126 stopped. 
Aug  4 09:16:32 localhost systemd[1]: mdmon@md127.service: Succeeded. 
Aug  4 09:16:32 localhost kernel: md: md126 stopped. 
Aug  4 09:16:32 localhost kernel: md: md127 stopped. 
Aug  4 09:19:53 localhost kernel: md/raid1:md126: not clean -- starting background 
reconstruction 
Aug  4 09:19:53 localhost kernel: md/raid1:md126: active with 2 out of 2 mirrors 
Aug  4 09:19:53 localhost kernel: md126: detected capacity change from 0 to 107374182400 
Aug  4 09:19:53 localhost systemd[1]: Starting MD Metadata Monitor on /dev/md127... 
Aug  4 09:19:53 localhost systemd[1]: Started MD Metadata Monitor on /dev/md127. 
Aug  4 09:19:53 localhost kernel: md: resync of RAID array md126 
Aug  4 09:21:37 localhost kernel: md: md126: resync done. 
Aug  4 09:21:44 localhost kernel: md126: detected capacity change from 107374182400 to 0 
Aug  4 09:21:44 localhost kernel: md: md126 stopped. 
Aug  4 09:21:44 localhost systemd[1]: mdmon@md127.service: Succeeded. 
Aug  4 09:21:44 localhost kernel: md: md126 stopped. 
Aug  4 09:21:44 localhost kernel: md: md127 stopped. 

5.2 Intel® VROC RAID Monitoring in Linux* 
Once the Intel® VROC RAID volume is created and started, a RAID monitoring service 
(daemon) called mdmonitor is started automatically to monitor Intel® VROC RAID events 
and trigger actions if configured. 

5.2.1 Use mdadm Monitoring Daemon  

mdadm monitoring can be started with the following command: 

# mdadm --monitor –-scan --daemonise –-syslog 

The command above runs mdadm as a daemon to monitor all md devices. All events will 
be reported to syslog. The user can monitor the syslog and filter for specific mdadm 
events generated.  

It is mandatory to define the email address in the mdadm.conf file before starting the 
mdadm monitoring. The following command shows an example to configure the email 
address in the configuration file.  

# echo “MAILADDR root” >> /etc/mdadm.conf 

5.2.2 Use systemctl for RAID Monitoring 

The mdmonitor daemon is configured to work with systemd. To see if the mdmonitor 
services are running as anticipated, you may use the following command to check the 
status: 

# systemctl status mdmonitor.service 

The following command can be used to manually start the service if you find that it is 
not running: 

# systemctl start mdmonitor.service 

Alternatively, the service can be restarted by running the following command: 

# systemctl restart mdmonitor.service 



Intel® VROC RAID Logging and Monitoring in Linux*  

333915  55 

The service can also be enabled to start immediately following each reboot. Use this 
command: 

# systemctl enable mdmonitor.service 

To stop the service, the following command is used: 

# systemctl stop mdmonitor.service 

5.3 Intel® VROC RAID Alerts in Linux* 
Intel® VROC reports the following RAID alerts through the monitoring service in Linux*. 
Users can develop their own program to hook the monitoring service to receive and 
handle those RAID alerts. 

Table 5-1. Intel® VROC RAID Alerts in Linux* 

VROC 
Alert/Event Severity Description 

Fail Critical A member drive of RAID is faulty. 

FailSpare Critical The spare drive which was being rebuilt to has failed.   

DeviceDisappeared Critical A RAID volume is disappeared (or removed). 

DegradedArray Critical A newly noticed RAID array appears to be degraded. 

RebuildStarted Warning A degraded RAID started rebuilding (recovery).  

RebuildNN Warning 
Notification of rebuilding progress，NN is two-digit number 
(e.g., 20, 40, …) which indicates the rebuild has passed that 
many percent of the total.  

RebuildFinished Warning The rebuilding of a degraded RAID is completed or aborted.  

SparesMissing Warning One or more spare drives defined in the mdadm.conf file is 
disappeared (or removed).  

SpareActive Information The spare drive which was being rebuilt to has been 
successfully rebuilt and made active.  

NewArray Information A new RAID array has been detected.  

MoveSpare Information A spare drive has been moved from one array to another.  

5.4 Develop a Program to Handle Intel® VROC Alerts 
The Intel® VROC RAID monitoring service allows any user-defined program to be hooked 
to receive and handle the RAID alerts. The system administrator should configure the 
/etc/mdadm.conf file to add the user-defined program which will be called by the 
monitoring service whenever an alert is detected. 

The Intel® VROC RAID monitoring service will call the user-defined program and pass 
two or three parameters to it when an alert occurs. The first parameter is the event 
name. The second parameter is the RAID volume device name. There will be the third 
parameter when the event is related to the spare device or RAID member device.  

The following is the bash script example of a user-defined program, which shows how to 
handle the alerts the Intel® VROC engine reports. In this example, the program simply 



 Intel® VROC RAID Logging and Monitoring in Linux* 

56   333915 

prints the event messages to the /tmp/vroc_alerts.log file when it receives an event. 
The user can develop their own method of handling those Intel® VROC alerts.  

 
#!/bin/bash 
 
event=$1 
md_device=$2 
device=$3 
 
case $event in 
    DegradedArray) 
        msg="$md_device is running in the Degraded MODE" 
        ;; 
    DeviceDisappeared) 
        msg="$md_device has disappeared" 
        ;; 
    Fail) 
        msg="$md_device had a failed member device: $device" 
        ;; 
    FailSpare) 
        msg="$md_device: Spare device ($device) FAIL during rebuild" 
        ;; 
    RebuildStarted) 
        msg="Recovery/Rebuilding of $md_device has started" 
        ;; 
    Rebuild??) 
        msg="$md_device REBUILD is now $(echo $event|sed 's/Rebuild//')% complete" 
        ;; 
    RebuildFinished) 
        msg="Rebuild of $md_device is completed or aborted" 
        ;; 
    SpareActive) 
        msg="$device has become an ACTIVE COMPONENT of $md_device" 
        ;; 
    NewArray) 
        msg="$md_device has been detected" 
        ;; 
    MoveSpare) 
        msg="SPARE device $device has been MOVED to a new array :$md_device" 
        ;; 
    SparesMissing) 
        msg="$md_device is MISSING one or more SPARE devices" 
        ;; 
    TestMessage) 
        msg="TEST MESSAGE generated for $md_device" 
        ;; 
esac 
 
# In this example, we just send the event message to the tmp log. 
echo "[$(date -u)] $msg" >> /tmp/vroc_alerts.log 

The system administrator can place the user-defined program into the /usr/sbin 
directory. For example: /usr/sbin/vroc_linux_events_handler.sh. 

Then, edit the /etc/mdadm.conf file and add the following line. This is the step to enable 
the Intel® VROC RAID monitoring service to call this PROGRAM when the RAID alert 
occurs.  

PROGRAM /usr/sbin/vroc_linux_events_handler.sh 

Here is the example of the mdadm.conf file with the user-defined program added:  

# cat /etc/mdadm.conf 
ARRAY metadata=imsm UUID=f69f9275:68fce440:3420da7a:48e2a723 



Intel® VROC RAID Logging and Monitoring in Linux*  

333915  57 

ARRAY /dev/md/vol0 container=f69f9275:68fce440:3420da7a:48e2a723 member=0 
UUID=06c1975e:2c160226:ef62cbc6:b42e4570 
POLICY domain=DOMAIN path=* metadata=imsm action=spare-same-slot 
PROGRAM /usr/sbin/vroc_linux_events_handler.sh 

The following is the example of messages the above example program printed to the log 
file when receiving the Intel® VROC alerts: 

# cat /tmp/vroc_alerts.log 
[Tue Feb 21 01:59:28 UTC 2023] Rebuild of /dev/md/vol0 is completed or aborted 
[Tue Feb 21 01:59:28 UTC 2023] /dev/md/vol0 has disappeared 
[Tue Feb 21 02:13:47 UTC 2023] /dev/md/vol0 REBUILD is now 21% complete 
[Tue Feb 21 02:29:53 UTC 2023] /dev/md/vol0 REBUILD is now 40% complete 
[Tue Feb 21 02:43:53 UTC 2023] /dev/md/vol0 REBUILD is now 60% complete 
[Tue Feb 21 02:56:54 UTC 2023] /dev/md/vol0 REBUILD is now 80% complete 
[Tue Feb 21 03:10:08 UTC 2023] Rebuild of /dev/md/vol0 is completed or aborted 
[Wed Feb 22 02:44:28 UTC 2023] /dev/md/vol0 had a failed member device: /dev/nvme7n1 
[Wed Feb 22 02:47:01 UTC 2023] Recovery/Rebuilding of /dev/md/vol0 has started 

§§ 



  Intel® VROC RAID Advanced Usages in Linux* 

58   333915 

6 Intel® VROC RAID Advanced 
Usages in Linux* 
This chapter describes various additional commands used for Intel® VROC RAID 
advanced management in Linux*. The advanced usages of Intel® VROC RAID in Linux* 
include Online Capacity Expansion (OCE), RAID level migration, changing RAID chunk 
size, as well as enabling Partial Parity Log (PPL) for RAID 5 write hole closure and 
enabling write-intent bitmap function. Some advanced changes to Intel® VROC RAID 
may result in a RAID reshape or resync process in the background. Even though the 
data remains intact for all those advanced usages, it is strongly recommended to back 
up the user data before performing those advanced operations.   

6.1 Changing RAID Volume Name 
Any changes to the RAID volume should be performed when the volume status is 
inactive.  

First, refer to Section 4.3.2 to check the status of the Intel® VROC RAID volume. If the 
RAID volume status is active, refer to Section 4.8.1 to stop it.  

Then, use the following command to change the Intel® VROC RAID volume name. In this 
example, /dev/md/imsm is the container device that this change is applied to. The name 
of subarray 0 is updated to be “vol”.  

# mdadm --update-subarray=0 --update=name --name=vol /dev/md/imsm 

Note: The --update-subarray= parameter expects the index of the volume inside the container, 
which is starting from 0. If there is more than one volume in the container, the index 
should be set accordingly. The subarray index can be found from the Intel® VROC RAID 
metadata (see Section 4.3.4). 

Expected result: 

mdadm: Updated subarray-0 name from /dev/md/imsm, UUIDs may have changed 

Note: If the RAID configuration file is created by following the commands in Section 4.4, it is 
necessary to change the name and UUID in the configuration file manually.  

Lastly, the RAID volume with the updated name can now be assembled. Refer to Section 
4.9 for the commands to assemble a RAID volume.  

6.2 Enabling and Disabling PPL for Intel® VROC RAID 5 
RWH Protection 
RAID Write Hole (RWH) is a fault scenario, related to parity-based RAID 5. It occurs 
when a power-failure/crash and a drive failure occur at the same time or very close to 
each other. Unfortunately, these system crashes and disk failures are correlated events 
that may cause silent data corruption.  



Intel® VROC RAID Advanced Usages in Linux*  

333915  59 

Partial Parity Log (PPL) is a feature available for Intel® VROC RAID 5 arrays designated 
to close RWH. Additionally, with PPL enabled resync of the array is not needed after dirty 
shutdown. 

PPL is disabled by default unless it is explicitly enabled when creating RAID 5 using 
mdadm commands. Check Section 4.2.5 for the example of creating RAID 5 with PPL 
enabled. It is also supported to enable PPL for an active RAID 5 volume. The following 
command demonstrates how to enable PPL for a RAID 5 volume named /dev/md/vol: 

# mdadm --grow --consistency-policy=ppl /dev/md/vol 

On success, the above command doesn’t return any output. The result can be verified by 
checking the details of the volume (see Section 4.3.3). As for a successful enabling of 
PPL, the “Consistency Policy” in the volume details should be set to “ppl”. 

To disable PPL on an active RAID 5 volume (/dev/md/vol), the following command can 
be used: 

# mdadm --grow --consistency-policy=resync /dev/md/vol 

On success, the above command doesn’t return any output. The result can be verified by 
checking the details of the volume (see Section 4.3.3). As for a successful disabling of 
PPL, “Consistency Policy” should be set to “resync”. 

Note: The default Consistency Policy is “resync”. 

6.3 Enabling and Disabling Write-Intent Bitmap 
Bitmap is a RAID feature that records blocks of data to which the changes are made. 
This way there is no need to sync the whole array but just the blocks that changed. This 
feature can be useful when system reboots after dirty shutdown. Bitmap works only on 
RAID levels with redundancy. 

The bitmap feature can be enabled when creating the RAID volume. The following is an 
example to create an Intel® VROC RAID 5 volume with bitmap feature enabled:  

# mdadm --create /dev/md/imsm0 /dev/nvme[0-2]n1 --raid-devices=3 --metadata=imsm 
# mdadm --create /dev/md/r5 /dev/md/imsm0 --raid-devices=3 --level=5 --bitmap=internal 

The bitmap feature can also be enabled or disabled on an active Intel® VROC RAID 
volume. The first step is to stop the active RAID volume because it is an offline 
operation. Remember to save the RAID configuration beforehand (see Section 4.4) in 
order to assemble the volume again afterwards. The following example lists the 
commands to enable/disable the bitmap feature. 

This is an example to enable write-intent bitmap on an active RAID volume: 

# mdadm --stop /dev/md/<volume_name> 
# mdadm --update-subarray=<subarray_index> --update=bitmap /dev/md/<container_name> 
# mdadm --assemble /dev/md/<volume_name> 

Note: The --update-subarray= parameter expects the index of the volume inside the container, 
which is starting from 0. If there is more than one volume in the container, the index 
should be set accordingly. The subarray index can be found from the Intel® VROC RAID 
metadata (see Section 4.3.4). 

This is an example to disable write-intent bitmap on an active RAID volume: 

# mdadm --stop /dev/md/<volume_name> 



  Intel® VROC RAID Advanced Usages in Linux* 

60   333915 

# mdadm --update-subarray=<subarray_index> --update=no-bitmap /dev/md/<container_name> 
# mdadm --assemble /dev/md/<volume_name> 

Note: mdadm GROW operations cannot be executed on volumes with bitmap enabled. Bitmap 
must be disabled first, execute grow operation and enable bitmap again. 

Note: Bitmap and PPL cannot be enabled simultaneously for Intel® VROC RAID 5.  

There are several ways to check whether bitmap is enabled or not: 

1. By reading the /proc/mdstat file: 
# cat /proc/mdstat 
Personalities : [raid6] [raid5] [raid4] 
md126 : active (auto-read-only) raid5 nvme1n1[2] nvme3n1[1] nvme2n1[0] 
      1953513472 blocks super external:/md127/0 level 5, 128k chunk, algorithm 0 [3/3] 
[UUU] 
      bitmap: 0/8 pages [0KB], 65536KB chunk 
 
md127 : inactive nvme1n1[2](S) nvme2n1[1](S) nvme3n1[0](S) 
      15603 blocks super external:imsm 
 
unused devices: <none> 

a. When bitmap is enabled, an additional line starting with bitmap is shown. The 
bitmap information in the /proc/mdstat file is as follows: 

bitmap: 0/8 pages [0KB], 65536KB chunk 

Bitmap line header How many pages are allocated and 
used, as well as the allocated size 

Size of the chunk data mapped 
into each bit in the bitmap 

2. By checking RAID volume details (see Section 4.3.3). In the detailed information of 
a RAID volume, the enabled bitmap information is shown as follows: 

Intent Bitmap : Internal 
Consistency Policy : bitmap 

a. If bitmap is disabled, the “Intent Bitmap” field is not visible, and “Consistency 
Policy” field shows “resync” or “ppl”. 

3. By reading the RAID metadata (see Section 4.3.4). If the bitmap is enabled, the 
following can be observed in the RAID metadata:  

RWH Policy : Write-intent bitmap 

6.4 Changing RAID Chunk Size 

Caution: Even though the data remains intact, it is strongly recommended to back up the user 
data before changing the RAID chunk size.  

A RAID array’s chunk size defines the smallest amount of data per write operation that 
should be written to each individual disk. Depending on the specific requirements of a 
user workload as well as the drive’s specification, users may need to change the RAID 
chunk size to fully optimize the RAID performance.   

Intel® VROC Linux* supports changing the RAID chunk size on RAID level 0 and 5 with 
the supported value from 4KB to 128KB. The default chunk size is 128KB.  

To change the chunk size of the RAID volume, the following command can be used. In 
the following example, the chunk size of a RAID volume (/dev/md/volume) is changed to 
64KB. 

# mdadm --grow /dev/md/volume --chunk=64 



Intel® VROC RAID Advanced Usages in Linux*  

333915  61 

By default, the chunk size is specified in kilobytes. Adding the M specifier signifies 
megabytes. Provided chunk size must be a power of 2, with minimal chunk size being 
4KB. 

Expected output: 

mdadm: level of /dev/md/volume changed to raid4 

The RAID reshaping process will be performed in the background right after executing 
the above command. When changing the chunk size of RAID 0, a temporary RAID 4 is 
used during the reshaping process. The migration result can be verified by checking the 
/proc/mdstat file (see Section 4.3.2) or reading the RAID volume details (see Section 
4.3.3). 

Note: Specifying the chunk size is not applicable for RAID 1 and RAID 10. 

6.5 Online Capacity Expansion (OCE) 
The Online Capacity Expansion (OCE) feature allows the RAID capacity to increase. 
Online indicates that the operation can be performed while the RAID volume is actively 
used, without the need to stop the application or RAID volume. This avoids having down 
time from taking the RAID volume offline and ensure the business continuity. There are 
two kinds of capacity expansion of an Intel® VROC RAID volume: 
1. Increasing the RAID volume capacity to the maximum drive capacity or a larger 

value than the initial one. 
2. Adding one or more drives to expand the RAID volume capacity. 

Caution: Data should always be backed up before performing any OCE operation.  

Note: Capacity decreasing is not supported by Intel® VROC Linux*. 

Note: If the RAID volume’s consistency policy is not the default “resync”, in other words it is 
“bitmap” or “ppl”, it should be changed to “resync” in order to perform the OCE. After 
OCE operation, it can be changed back. Refer to Section 6.2 and Section 6.3 for details 
about PPL and Bitmap.  

6.5.1 OCE on Existing RAID Member Disks 

By default, when creating an Intel® VROC RAID volume by using mdadm commands, the 
maximum available capacity of the drives will be used if no specific --size option is 
added. Users can also create an Intel® VROC RAID volume with designated capacity by 
adding the --size option in the mdadm command line. Refer to Section 4.2 for details 
on creating an Intel® VROC RAID.  

The expansion of the RAID volume capacity can only be applied to the RAID level 1, 5, 
and 10 with free space available on each RAID member disk. If there are multiple RAID 
volumes inside one RAID container, only the last RAID volume can perform OCE. The 
following shows examples of different options to increase the RAID volume capacity.  

Size for capacity expansion can be specified in two ways. Either by using “max”, where 
volume will grow to the maximum available space or by explicitly using a designated 
size. 

Examples of increasing Intel® VROC RAID volume capacity: 



  Intel® VROC RAID Advanced Usages in Linux* 

62   333915 

# mdadm --grow /dev/md/vol1 --size=max 
# mdadm --grow /dev/md/vol2 --size=200G 
# mdadm --grow /dev/md/vol3 --size=1T 

Note: The “size” specified in the above examples is the size on each RAID member disk. The 
“resync” operation to the expanded space will start right away after executing the above 
commands.  

6.5.2 OCE by Adding New Drives 

Intel® VROC Linux* supports OCE by adding new drives on following RAID levels: 

• RAID 0  

• RAID 5 

• Intel® Matrix RAID with RAID 0 and RAID 5  

• Intel® Matrix RAID with two RAID 0 

• Intel® Matrix RAID with two RAID 5 

The OCE operation needs to be done in two steps.  

First, follow the instructions in Section 4.6 to add new spare drives to the container. 
Second, perform the OCE to grow the number of RAID member devices. The following 
command shows an example of an OCE operation to grow the number of RAID member 
devices to 4 for each RAID volume in the container named as /dev/md/imsm: 

# mdadm --grow --raid-devices=4 /dev/md/imsm 

On success, the command doesn’t return any output, and the RAID reshaping process 
will be performed right away in the background. Users can follow the instructions in 
Section 4.3 to monitor the RAID reshaping status.  

Note: To reduce the reshape impact on performance, only one RAID volume can be reshaped 
at a time. If Intel® VROC Matrix RAID is configured, the reshape on one volume will be 
delayed and will not be visible in the volume details. 

Note: RAID level 0 is temporarily changed to RAID level 4 during the reshape operation. 

6.6 RAID Level Migration 
The RAID level migration feature allows to change the level of the RAID volume online. 
All data remains intact. 

Caution: Even though the data remains intact, it is strongly advised for the data to be backed up 
before performing migration operations.  

The following table shows the available migration support with Intel® IMSM metadata. 
You must have the appropriate number of drives necessary for the level you are 
converting to as spare drives. For information on the required number of disks for each 
RAID level refer to Section 1.2. 



Intel® VROC RAID Advanced Usages in Linux*  

333915  63 

Table 6-1. Migration Capabilities with IMSM 

Destination  
 Source level 

RAID 0 RAID 1 RAID 10 RAID 5 

RAID 0 N/A No Yes Yes 

RAID 1 Yes N/A No *Yes 

RAID 10 Yes No N/A *Yes 

RAID 5 No No No N/A 

Note: Migrations from RAID 1 to RAID 5 or from RAID 10 to RAID 5 must be done in two 
steps. A conversion to RAID 0 first is necessary before converting to RAID 5. During the 
second step (migration from RAID 0 to RAID 5) the addition of spare drive(s) may be 
needed.  

6.6.1 RAID 1 to RAID 0 Migration 

Two steps are required to migrate from RAID 1 to RAID 0.  
1. Migrate from 2-disk RAID 1 to 1-disk RAID 0. The following command shows an 

example of migrating from a 2-disk RAID 1 volume (/dev/md/volume) to 1-disk RAID 
0: 

# mdadm --grow /dev/md/volume --level=0 

The command will return immediately with the following output. The migration result 
can be verified by checking the /proc/mdstat file (see Section 4.3.2) or reading the RAID 
volume details (see Section 4.3.3).  

mdadm: level of /dev/md/volume changed to raid0 

2. Use OCE to migrate 1-disk RAID 0 to 2-disk RAID 0. The RAID reshaping process will 
be performed in the background. Refer to Section 6.5.2 for details about OCE 
instructions. The following command shows an example of growing 1-disk RAID 0 to 
2-disk RAID 0 in the /dev/md/imsm container: 

# mdadm --grow /dev/md/imsm --raid-devices=2 

6.6.2 RAID 10 to RAID 0 Migration 

RAID 10 is a combination of two RAID 1 used in RAID 0. Therefore, it has the similar 
process of RAID 1 to RAID 0 migration. Two steps are required to migrate from RAID 10 
to RAID 0.  
1. Migrate from 4-disk RAID 10 to 2-disk RAID 0. The following command shows an 

example of migrating from a 4-disk RAID 10 volume (/dev/md/volume) to 2-disk 
RAID 0: 

# mdadm --grow /dev/md/volume --level=0 

The command will return immediately with the following output. The migration result 
can be verified by checking the /proc/mdstat file (see Section 4.3.2) or reading the RAID 
volume details (see Section 4.3.3).  

mdadm: level of /dev/md/volume changed to raid0 

2. Use OCE to migrate 2-disk RAID 0 to 4-disk RAID 0. The RAID reshaping process will 
be performed in the background. Refer to Section 6.5.2 for details about OCE 
instructions. The following command shows an example of growing 2-disk RAID 0 to 
4-disk RAID 0 in the /dev/md/imsm container: 

# mdadm --grow /dev/md/imsm --raid-devices=4 



  Intel® VROC RAID Advanced Usages in Linux* 

64   333915 

6.6.3 RAID 0 to RAID 10 Migration 

Intel® VROC RAID 10 supports 4 drives only. Therefore, it only supports migrating from 
a 2-disk RAID 0 to 4-disk RAID 10 because RAID 10 is a nested RAID 0 over two RAID 
Two steps are required to migrate 2-disk RAID 0 to 4-disk RAID 10. 
1. Add two spare drives to the container. The following commands show an example of 

adding two spare drives (nvme0n1 and nvme1n1) to the container device /dev/md/imsm0 
for a 2-disk RAID 0 volume: 

# mdadm --add /dev/md/imsm0 /dev/nvme0n1 
# mdadm --add /dev/md/imsm0 /dev/nvme1n1 

2. Migrate 2-disk RAID 0 to 4-disk RAID 10. The following command shows an example 
of migrating a 2-disk RAID0 (/dev/md/volume) to 4-disk RAID 10: 

# mdadm --grow /dev/md/volume --level=10 

Expected output: 

mdadm: level of /dev/md/volume changed to raid10 

The RAID recovery (resyncing) process will be performed in the background right after 
executing the above command. The migration result can be verified by checking the 
/proc/mdstat file (see Section 4.3.2) or reading the RAID volume details (see Section 
4.3.3). 

6.6.4 RAID 0 to RAID 5 Migration 

The migration from RAID 0 to RAID 5 requires a hot spare drive being added in the 
container beforehand. Intel® VROC RAID 5 requires the minimum of 3 drives (see 
Section 1.2.3). Therefore, the minimum supported disk number for RAID 0 to RAID 5 
migration is migrating from 2-disk RAID 0 to 3-disk RAID 5. Of course, it can further 
migrate to RAID  5 with more than 3 member drives by OCE. The following example 
shows how to migrate from a 2-disk RAID 0 to 3-disk RAID 5. 
1. Add one spare drive to the container. The following commands show an example of 

adding one spare drive (nvme0n1) to the container device /dev/md/imsm0 for a 2-disk 
RAID 0 volume: 

# mdadm --add /dev/md/imsm0 /dev/nvme0n1 

2. Migrate 2-disk RAID 0 to 3-disk RAID 5. The RAID 5 layout must be set to left-
asymmetric, which is supported by Intel® VROC. The following command shows an 
example of migrating a 2-disk RAID 0 (/dev/md/volume) to 3-disk RAID 5: 

# mdadm --grow /dev/md/volume --level=5 --layout=left-asymmetric 

Expected output: 

mdadm: level of /dev/md/volume changed to raid5 

The RAID reshaping process will be performed in the background right after executing 
above command. The migration result can be verified by checking the /proc/mdstat file 
(see Section 4.3.2) or reading the RAID volume details (see Section 4.3.3). 

Note: Intel® VROC only supports the left-asymmetric layout of RAID 5.  

6.6.5 RAID 1 to RAID 5 Migration 

Migration from 2-disk RAID 1 to 3-disk RAID 5 can be achieved in two steps.  
1. Migrate from 2-disk RAID 1 to 2-disk RAID 0, which is described in Section 6.6.1.  
2. Migrate from 2-disk RAID 0 to 3-disk RAID 5, which is described in Section 6.6.4. 



Intel® VROC RAID Advanced Usages in Linux*  

333915  65 

Users can further grow 3-disk RAID 5 to a larger RAID 5 array with more drives through 
OCE, which is described in Section 6.5.2.  

6.6.6 RAID 10 to RAID 5 Migration 

Migration from 4-disk RAID 10 to 3-disk RAID 5 can be achieved in two steps.  
1. Migrate from 4-disk RAID 10 to 2-disk RAID 0, which is described in Section 6.6.1.  
2. Migrate from 2-disk RAID 0 to 3-disk RAID 5, which is described in Section 6.6.4.  

Users can further grow 3-disk RAID 5 to a larger RAID 5 array with more drives through 
OCE, which is described in Section 6.5.2.  

§§ 



  Intel® VROC LED Management in Linux* 

66   333915 

7 Intel® VROC LED Management in 
Linux* 
Intel® VROC LED management in Linux* is achieved using the Linux* ledmon and ledctl 
utilities. These utilities have only been verified with Intel® storage controllers. 

ledmon can be run as a daemon to constantly monitor the status of drives and Intel® 
VROC RAID volumes and set the drive LEDs appropriately. Only a single instance of the 
daemon should be running at a time. On all the modern installations of Linux* OS, 
ledmon will be active and running as a systemd service. Should there not be systemd 
active on your installation, you will have to manually add ledmon to the /etc/rc.local 
file. 

The ledctl utility can be used to identify an individual drive on a backplane, useful when 
determining which drive maps to which drive bay slot. The ledctl application uses SGPIO 
and SES-2 to control LEDs. It implements IBPI patterns of SFF-8489 specification for 
SGPIO. The service monitors all RAID volumes. There is no method to specify individual 
volumes to monitor.  

Refer to the following document in GitHub for additional details: ledmon - Intel® LED 
monitor service for storage enclosures. 

7.1 Installing ledmon Package 

The ledmon package is by default included in all modern Linux* distributions. If it is not 
by default installed during Linux* OS installation process, the user can manually install it 
by following the user guide of a specific Linux* distribution. If there is a specific out-of-
box release from Intel, follow Intel® VROC Linux* Release Note to install the out-of-box 
ledmon package.  

7.2 Configuring ledmon  

Note: ledmon daemon is typically implemented as a systemd service in modern Linux* 
distributions to allow the auto startup for every system boot.  

7.2.1 Configuring ledmon with systemd  

Note: The ledmon service is loaded by the systemd when the system boots up. This section 
describes how to use the command to check if the ledmon.service was loaded from 
systemd.  

Check if the ledmon.service is running: 

# systemctl status ledmon.service 

If the service is not running, double check if the ledmon.service file exist in the 
/usr/lib/systemd/system directory. If not, create the new file 
/usr/lib/systemd/system/ledmon.service with the following content:  

[Unit] 
Description=Enclosure LED Utilities 

https://github.com/Intel%C2%AE/ledmon/blob/master/doc/ledmon.pod
https://github.com/Intel%C2%AE/ledmon/blob/master/doc/ledmon.pod


Intel® VROC LED Management in Linux*  

333915  67 

[Install] 
WantedBy=multi-user.target 
[Service] 
Type=simple 
User=root 
ExecStart=/usr/sbin/ledmon --foreground 
Restart=on-failure 

Start the ledmon systemd service if it is inactive: 

# systemctl start ledmon.service 

Enable the ledmon systemd service for automated startup of ledmon after each OS 
boots: 

# systemctl enable ledmon.service 

7.2.2 Configuring ledmon with /etc/rc.local  

If the systemd service is not available in your Linux* distribution, to ensure that the 
ledmon daemon starts on each reboot, open the file /etc/rc.local using your favorite 
editor program (e.g., VIM or VI). Insert/add ledmon to the final line of the file as shown 
below: 

# vi /etc/rc.local 
#!/bin/bash 
# THIS FILE IS ADDED FOR COMPATIBILITY PURPOSES 
# 
# It is highly advisable to create own system services or udev rules  
# to run scripts during boot instead of using this file. 
# 
# In contrast to previous versions due to parallel execution during boot  
# this script will be executed during boot.  
#  
# Please note that you must run ‘chmod +x /etc/rc.local’ to ensure 
# that this script will be executed during boot.  
# 
touch /var/lock/subsys/local 
ledmon 

Note: It is important that the addition of ledmon is located on the next line of the 
/etc/rc.local file. It is to reside by itself within that file on that line. Failure to configure 
this setting as such can cause the system to not function properly.  

7.3 Using ledctl Utility  
Running ledctl and ledmon can be done concurrently, however, the ledmon application 
has the highest priority when accessing LEDs than other programs. It means some 
patterns set by ledctl may have no effect (except the “locate” pattern).  

ledctl is a standalone tool used for controlling LEDs behaviors on the drive slots in a 
server platform. This is a one-shot command to trigger different types of LED behaviors. 
The available LED patterns for Intel® VROC are “locate”, “locate_off”, “rebuild”, “failure”, 
and “off (normal)”. Users must have root privileges to use this tool.  

To turn on a locate LED or trigger a “locate” LED pattern, the following command can be 
used. In the following example, the locate LED of the /dev/nvme0n1 device is triggered. 

# ledctl locate=/dev/nvme0n1 --listed-only 



  Intel® VROC LED Management in Linux* 

68   333915 

Note: The --listed-only option is added to specify the change of the LED status is only 
applied to the device listed in the command line. Otherwise, the rest of devices in the 
system will be set LED pattern to normal.  

To turn off a locate LED, the following command can be used:  

# ledctl locate_off=/dev/nvme0n1 --listed-only 

To trigger a “rebuild” LED pattern, the following command can be used: 

# ledctl rebuild=/dev/nvme0n1 --listed-only 

To trigger a “failure/fault” LED pattern, the following command can be used: 

# ledctl failure=/dev/nvme0n1 --listed-only 

To turn off the status LED, or set the status LED back to normal, the following command 
can be used: 

# ledctl off=/dev/nvme0n1 --listed-only 

The ledctl tool supports changing status LED behaviors on multiple devices at a time. In 
a single ledctl command line, use blank space to separate different LED patterns, and 
use comma to separate different block device names. The following command shows an 
example of triggering locate LED on the nvme0n1 and nvme1n1 devices, rebuild LED on the 
nvme2n1 device and fault LED on the nvme3n1 device. 

# ledctl locate=/dev/nvme0n1,/dev/nvme1n1 rebuild=/dev/nvme2n1 failure=/dev/nvme3n1 --
listed-only 

7.4 LED Activity During Hot-Plug Events 
After hot-removing a disk and re-inserting it in the same slot, the fault LED may blink 
for 10 seconds. This is the expected behavior because ledmon imposes fail state to slot’s 
LEDs once the drive is removed from the system, but the design backplanes require 
drive presence in the slot for LED to blink. So, the fail state is always there since the 
drive is removed, but LED start blinking only if the drive is in the slot (once the new 
drive is inserted). Ledmon will change the state to normal once the hot-plug event is 
handled. 

7.5 Advanced LED Management 
Intel® VROC Linux* will support the ability to perform basic LED management 
configuration of the status LEDs on compatible backplanes. Advanced LED management 
provides a mechanism for users to customize LED default behavior based on the 
ledmon.conf configuration file. The following table includes few example options on 
different LED status default behaviors. These advanced LED management capabilities 
can be set in the ledmon.conf configuration file. 



Intel® VROC LED Management in Linux*  

333915  69 

Table 7-1. The Enhanced LEDs Management Capabilities  

Event/Parameter Behavior Configuration Options Default 
Setting 

Skip/exclude controller 
 
BLACKLIST  

Ledmon will 
exclude scanning 
controllers listed 
on the blacklist. 
When whitelist is 
also set in the 
configuration file, 
the blacklist will be 
ignored. 

Controller in the blacklist 
will be excluded from the 
scanning. 

Support all 
controller 

RAID volume is 
initializing  
or verifying or 
verifying and fixing 
 
BLINK_ON_INIT  

Rebuild pattern on 
all drives in RAID 
volume (until 
initialization/verify/
verify and fix 
finishes). 

True/Enabled (on all 
drives) 
False/Disabled (no drives) 

True/Enabled 

Set ledmon scan interval 
 
INVERVAL 

The value is given 
in seconds. Defines 
the time interval 
between ledmon 
sysfs scans. 

10s (5s is maximum) 10s 

RAID volume is rebuilding 
 
REBUILD_BLINK_ON_ALL
  

Rebuild pattern on 
a single drive to 
which RAID volume 
rebuilds. 

False/Disabled (on one 
drive) 
True/Enabled (on all 
drives) 

False/Disabled 

RAID volume is migrating 
 
BLINK_ON_MIGR 

Rebuild pattern on 
all drives in RAID 
volume (until 
migration finishes). 

True/Enabled (on all 
drives) 
False/Disabled (no drives) 

True/Enabled 

Set ledmon debug level 
 
LOG_LEVEL 

Corresponds with 
the –log-level flag 
from ledmon. 

Acceptable values are 
quiet, error, warning, 
info, debug, all 
0 means quiet and 5 
means all. 

2 

Set manage RAID 
member or All 
 
RAID_MEMBRES_ONLY 

If this flag is set to 
true ledmon will 
limit monitoring 
only to drives that 
are RAID members 

False / (all RAID member 
and PT) 
True / (RAID member only) 

False 

Limited scans only to 
following controllers 
 
WHITELIST 

Ledmon will limit 
changing LED state 
to controllers listed 
on whitelist. 

Limit changing LED state in 
whitelist controller. No limit 



  Intel® VROC LED Management in Linux* 

70   333915 

Intel® VROC LED Management only applies to drives that reside within a supported drive 
backplane (NVMe and/or SATA). Drives that are connected either by an I/O cable, PCIe 
add-in card or plugged directly into the motherboard (M.2) will not have LED 
Management support. 

Intel® VROC LED Management does not include drive activity LED management (only 
status LEDs). 

Ledmon can be run as a daemon to constantly monitor the status of drives and software 
RAID and set the drive LEDs appropriately. The following table lists the additional 
options of ledmon to achieve some advanced LED management features, like accept 
user defined configuration from a configuration file, enable different levels of debug 
prints, as well as save logs into user’s defined log file, etc.    

Usage: 

# ledmon [OPTIONS] 

Table 7-2. Ledmon Options Listed 

Options Usage 

-c  
--config-path= 

Sets the configuration file path. This overrides any other configuration 
files. (Although the utility currently does not use a configuration file). 
The /etc/ledcfg.conf file is shared by ledmon and ledctl utilities. 

-l  
--log-path Sets the path to a log file. This overrides /var/log/ledmon.log. 

-t 
--interval= 

Sets the time interval in seconds between scans of the sysfs. A 
minimum of 5 seconds is set. 

--quiet 
--error 
---warning 
--info 
--debug 
--all 

Specifies verbosity level of the log. quiet means no logging at all, and 
all means to log everything. The levels are given in order. If user 
specifies more than one verbose option, the last option comes into 
effect. 

-h 
--help Prints help text and exits. 

-v 
--version Prints version and license information, then exits. 

§§



mdadm Quick Start Guide  

333915  71 

Appendix A mdadm Quick Start Guide 
Usage: 

# mdadm [mode] <raiddevice> [options] <component-devices> 

Assemble – Assemble previously created array into an active array 

# mdadm -A -s 
Scan and assembly all the 
RAID volume based on 
config file. 

# mdadm -A /dev/md/imsm0 -e imsm /dev/ <member drives> 
Assemble imsm0 container 
manually if without config 
file. 

# mdadm -A /dev/md/md0 /dev/md/imsm0 
Assemble md0 array 
manually if without config 
file. 

Create/Grow/Misc – Create new array with metadata/change active size or 
number of active devices 

# mdadm -C /dev/md/imsm0 /dev/nvme[0-3]n1 -n 4 -e imsm Create imsm0 container with 
4 nvme0-3 drives. 

# mdadm -C /dev/md/md0 /dev/md/imsm0 -n 4 -l 5 Create md0 as 4DR5 in 
imsm0 container. 

# mdadm -C /dev/md/md0 /dev/md/imsm0 - n 4 -l 5 --consistency-
policy=ppl 

Create md0 as 4DR5 in 
imsm0 container with RWH 
enabled. 

# mdadm -C /dev/md/md0 /dev/md/imsm0 -n 4 -l 5 -z 
$((100*1024*1024)) 

Create 4DR5 with 100GB 
size for each drive. 300GB 
size created with this 
example command. 

# mkfs.ext4 /dev/md/md0 Create ext4 filesystem in 
md0 RAID volume. 

# mount /dev/md/md0 /mnt/<mountpoint> Mount md0 RAID volume in 
the file system. 

# mdadm -a /dev/md/imsm0 /dev/<nvmeXn1> Add hot-spare drive to 
imsm0 container. 

# mdadm -Ebs > /etc/mdadm.conf Export device metadata to 
mdadm.conf file. 

# mdadm -S /dev/md/md0 Stop and deactivate md0 
array. 

# mdadm -S /dev/md/imsm0 Stop and deactivate imsm0 
container. 

# mdadm -S -s Stop and deactivate all. 

# mdadm -f /dev/md/md0 /dev/nvme0n1 Fail nvme0n1 drive in md0 
array. 

# mdadm -r /dev/md/imsm0 /dev/nvme0n1 Detached nvme0n1 drive in 
imsm0 container. 



  mdadm Quick Start Guide 

72   333915 

# mdadm --zero-superblock /dev/nvme0n1 
Clear and zero the 
superblock in nvme0n1 
drive. 

# mdadm -G /dev/md/md0 -l 0 Grow existing 2DR1 to 
1DR0. 

# mdadm -G /dev/md/imsm0 -n 2 Grow 2DR0 to container. 

# mdadm -a /dev/md/imsm0 /dev/nvme2n1 Add one more drive into 
container. 

# mdadm -G /dev/md/md0 -l 5 --layout=left-asymmetric Grow 2DR0 to 3DR5. 

# mdadm -G /dev/md/md0 --size=128G Grow component size md0 
to the 128GB. 

# mdadm -G /dev/md/md0 --consistency-policy=resync  
Switch RWH closure policy 
to resync on the running 
md0. 

# mdadm -G /dev/md/md0 --consistency-policy=ppl 
Enable RWH closure 
mechanism on the running 
md0. 

Volume, Member, Hardware Information 

# mdadm --detail-platform  Print detail of platform’s 
RAID capabilities. 

# mdadm -D /dev/md/md0 Print detail of md0 device. 

# mdadm -E /dev/nvme0n1 Print contents of metadata 
store in nvme0n1. 

# cat /proc/mdstat List all active md devices 
with information. 

Follow/Monitor/Misc – Monitor one or more devices on state changes 

# systemctl status mdmonitor.service Check mdmonitor service. 

# systemctl start mdmonitor.service Start mdmonitor service. 

# systemctl stop mdmonitor.service Stop mdmonitor service. 

# systemctl enable mdmonitor.service Enable mdmonitor service 
for next boot auto start. 

§§



MDRAID Sysfs Components  

333915  73 

Appendix B MDRAID Sysfs Components 
The MDRAID subsystem has sysfs components that provide information or can be used 
to tweak behavior and performance. All MDRAID devices present in the system are 
shown in /sys/block/. 

Example: 

# ls -l /sys/block/md* 
lrwxrwxrwx 1 root root 0 May 17 13:26 /sys/block/md126 -> ../devices/virtual/block/md126 
lrwxrwxrwx 1 root root 0 May 17 13:26 /sys/block/md127 -> ../devices/virtual/block/md127 

Mapping between a device number and its name can be found as shown below: 

# ls -l /dev/md/ 
total 0 
lrwxrwxrwx 1 root root 8 May 17 13:26 imsm0 -> ../md127 
lrwxrwxrwx 1 root root 8 May 17 13:26 raid1 -> ../md126 

Note: md127 is imsm0 and md126 is raid1. 

MD devices in /sys/block are symbolic links pointing to /sys/devices/virtual/block. All 
MD devices are in the md subdirectory in the /sys/devices/virtual/block/mdXYZ 
directory. In the md directory the following contents can be found: 

# ls -l /sys/devices/virtual/block/md127/md 
total 0 
-rw-r--r-- 1 root root 4096 May 18 13:18 array_size 
-rw-r--r-- 1 root root 4096 May 17 13:26 array_state 
drwxr-xr-x 2 root root    0 May 18 13:18 bitmap 
-rw-r--r-- 1 root root 4096 May 18 13:18 chunk_size 
-rw-r--r-- 1 root root 4096 May 18 13:18 component_size 
drwxr-xr-x 2 root root    0 May 17 13:26 dev-nvme1n1 
drwxr-xr-x 2 root root    0 May 17 13:26 dev-nvme2n1 
-rw-r--r-- 1 root root 4096 May 18 13:18 layout 
-rw-r--r-- 1 root root 4096 May 17 13:26 level 
-rw-r--r-- 1 root root 4096 May 18 13:18 max_read_errors 
-rw-r--r-- 1 root root 4096 May 17 13:26 metadata_version 
--w------- 1 root root 4096 May 17 13:26 new_dev 
-rw-r--r-- 1 root root 4096 May 17 13:26 raid_disks 
-rw-r--r-- 1 root root 4096 May 18 13:18 reshape_position 
-rw-r--r-- 1 root root 4096 May 18 13:18 resync_start 
-rw-r--r-- 1 root root 4096 May 18 13:18 safe_mode_delay 

Since the MD device is a container, the metadata version file will show: 

# cat /sys/devices/virtual/block/md127/md/metadata_version  
external:imsm 

The directory contains subdirectories dev-nvme1n1 and dev-nvme2n1 specifying the disks 
that the container is assembled from. 
  



  MDRAID Sysfs Components  

 

74   333915 

The MD volume contents look like below: 

# ls -l /sys/devices/virtual/block/md126/md/ 
total 0 
-rw-r--r-- 1 root root 4096 May 17 13:26 array_size 
-rw-r--r-- 1 root root 4096 May 17 13:26 array_state 
drwxr-xr-x 2 root root    0 May 18 13:10 bitmap 
--w------- 1 root root 4096 May 18 13:10 bitmap_set_bits 
-rw-r--r-- 1 root root 4096 May 17 13:26 chunk_size 
-rw-r--r-- 1 root root 4096 May 17 13:26 component_size 
-r--r--r-- 1 root root 4096 May 17 13:26 degraded 
drwxr-xr-x 2 root root    0 May 17 13:26 dev-nvme1n1 
drwxr-xr-x 2 root root    0 May 17 13:26 dev-nvme2n1 
-rw-r--r-- 1 root root 4096 May 17 13:26 layout 
-rw-r--r-- 1 root root 4096 May 17 13:26 level 
-rw-r--r-- 1 root root 4096 May 18 13:10 max_read_errors 
-rw-r--r-- 1 root root 4096 May 17 13:26 metadata_version 
-r--r--r-- 1 root root 4096 May 18 13:10 mismatch_cnt 
--w------- 1 root root 4096 May 17 13:26 new_dev 
-rw-r--r-- 1 root root 4096 May 17 13:26 raid_disks 
lrwxrwxrwx 1 root root    0 May 17 13:26 rd0 -> dev-nvme1n1 
lrwxrwxrwx 1 root root    0 May 17 13:26 rd1 -> dev-nvme2n1 
-rw-r--r-- 1 root root 4096 May 18 13:10 reshape_position 
-rw-r--r-- 1 root root 4096 May 17 13:26 resync_start 
-rw-r--r-- 1 root root 4096 May 17 13:26 safe_mode_delay 
-rw-r--r-- 1 root root 4096 May 18 13:10 suspend_hi 
-rw-r--r-- 1 root root 4096 May 18 13:10 suspend_lo 
-rw-r--r-- 1 root root 4096 May 17 13:26 sync_action 
-r--r--r-- 1 root root 4096 May 17 13:26 sync_completed 
-rw-r--r-- 1 root root 4096 May 18 13:10 sync_force_parallel 
-rw-r--r-- 1 root root 4096 May 18 13:10 sync_max 
-rw-r--r-- 1 root root 4096 May 18 13:10 sync_min 
-r--r--r-- 1 root root 4096 May 17 13:26 sync_speed 
-rw-r--r-- 1 root root 4096 May 18 13:10 sync_speed_max 
-rw-r--r-- 1 root root 4096 May 18 13:10 sync_speed_min 

Several new files are present, and they are related to the RAID volume properties. Base 
information can be read from the following files: 

Array size: 

# cat /sys/devices/virtual/block/md126/md/array_size  
1048576 

Array state: 

# cat /sys/devices/virtual/block/md126/md/array_state  
clean 

Raid level: 

# cat /sys/devices/virtual/block/md126/md/level  
raid1 

Strip size: 

# cat /sys/devices/virtual/block/md126/md/chunk_size  
65536 

Metadata: 

# cat /sys/devices/virtual/block/md126/md/metadata_version  
external:/md127/0 
  



MDRAID Sysfs Components   

 

333915  75 

And this is what is shown in the /proc/mdstat file for the example RAID information: 

# cat /proc/mdstat  
Personalities : [raid1]  
md127 : active raid1 nvme0n1[1] nvme1n1[0] 
      78148256 blocks super external:/md0/0 [2/2] [UU] 
       
md0 : inactive nvme1n1[1](S) nvme0n1 [0](S) 
      2210 blocks super external:imsm 
        
unused devices: <none> 

§§ 



  RAID Monitoring Parameters and Events  

 

76   333915 

Appendix C RAID Monitoring 
Parameters and Events 

The following table lists additional command line parameters that can be passed to 
mdadm at startup. 

Table C-1. Parameters for mdadm in Monitor Mode 

Long form Short 
Form Description 

--mail -m Provide mail address to email alerts or failures to. 

--program or --alert -p Provide program to run when an event is detected. 

--delay -d Seconds of delay between polling state. Default is 60s. 

--config -c Specify a different config file. 

--scan -s Find mail-address/program settings in config file. 

--oneshot -1 Check for degraded arrays and then exit. 

--test -t Generate a Test Message event against each array at 
startup. 

--syslog -y Cause all events to be reported through syslog. The 
messages have facility of ’daemon’ and varying priorities. 

--increment -r 
Give a percentage increment. mdadm will generate 
RebuildNN events with the NN indicating the percentage 
at which the rebuild event had happened. 

--daemonise -f Run as background daemon if monitoring. 

--pid-file -i Write the PID of the daemon process to a specified file. 

--no-sharing N/A This inhibits the functionality for moving spare drives 
between arrays. 

Note: The mdmonitor service has to be re-started if mdmonitor.service or the mdadm.conf file 
is changed. 

The following table presents all the events that are reported by the mdadm monitor: 

Table C-2. Monitoring Events 

Event Name Description 

DeviceDisappeared An MD array previously configured no longer exists. 

RebuildStarted An MD array started reconstruction. 

RebuildNN NN is a 2-digit number that indicates rebuild has passed that many percent 
of the total. For example, Rebuild50 will trigger an event when 50% of 
rebuild has completed. 

RebuildFinished An MD array has completed rebuild. 

Fail1 An active component of an array has been marked faulty. 

FailSpare1 A spare drive that was being rebuilt to replace a faulty device has failed. 



RAID Monitoring Parameters and Events   

 

333915  77 

Event Name Description 

SpareActive A spare drive that was being rebuilt to replace a fault device is rebuilt and 
active. 

NewArray A new MD array has been detected in /proc/mdstat. 

DegradedArray1 A newly discovered array appears to be degraded. 

MoveSpare A spare drive has been moved from one array in a spare group to another 
array to replace a failed drive. Both arrays are labeled with the same spare 
group. 

SparesMissing1 The spare device(s) does not exist in comparison to the config file when the 
MD array is first discovered. 

TestMessage1 Discovered new array while the --test flag was used.  

Note: 1 The events indicated cause an email to be sent. These can also be sent to the syslog 
file. 

§§ 



  ledmon.conf  

 

78   333915 

Appendix D ledmon.conf  
NAME 

ledmon.conf - Configuration file for Intel® Enclosure LED Utilities. 

DESCRIPTION 

The ledmon configuration file allows you to use advanced settings and functions of Intel® 
Enclosure LED Utilities. The global location of the configuration file is /etc/ledmon.conf. 
Instead of a global configuration file, you can specify a local config file using the -c 
option when running ledmon. 

SYNTAX 

One line should keep exactly one option and value in the configuration file in format: 
OPTION=VALUE. Any word that begins with a hash sign (#) starts a comment and that 
word together with the remainder of the line is ignored. Empty lines are allowed. Either 
single quotes (') or double quotes (") should not be used. 

Values that are considered as truth: enabled, true, yes, 1. 

Values that are considered as false: disabled, false, no, 0. 

See also the examples section. 

List of configurable options: 

BLACKLIST - Ledmon will exclude scanning controllers listed on blacklist. When 
whitelist is also set in config file, the blacklist will be ignored. The controllers should be 
separated by comma (,) character. 

BLINK_ON_INIT - Related with RAID Initialization (resync), Verify (check), and 
Verify and Fix (repair) processes. If value is set to true, status LEDs of all member 
drives will blink with proper pattern. If RAID volume is under sync process. If value is 
set to false, processes like init or verifications will not be reported by LEDs. The default 
value is true. 

BLINK_ON_MIGR - RAID can be migrated between some levels or strip sizes and the 
flag is related with these processes. Also RAID Grow operation will be reported along 
with this flag. If value is set to true, status LEDs of all member drives will blink with 
proper pattern if RAID volume is under reshape.  If value is set to false, listed actions 
will not be reported by LEDs. The default value is true. 

INTERVAL - The value is given in seconds. Defines time interval between ledmon 
sysfs scan. The minimum is 5 seconds the maximum is not specified. The default value 
is 10 seconds. 

LOG_LEVEL - Corresponds with --log-level flag from ledmon. Log level QUIET means 
no logging at all and ALL means to log everything. The default log level is WARNING. 
Acceptable values are quiet, error, warning, info, debug, all.  Value also can be set 
by integer number - 0 means quiet and 5 means all. 

LOG_PATH - Sets a path to local log file. If this option is specified, the global log file 
/var/log/ledmon.log is not used. 



ledmon.conf   

 

333915  79 

RAID_MEMBERS_ONLY - If flag is set to true, ledmon will limit monitoring only to 
drives that are RAID members. The default value is false. 

REBUILD_BLINK_ON_ALL - Flag is related with RAID rebuild process. When value is 
set to false, only the drive that the RAID is rebuilding to will be marked with 
appropriate LED pattern. If value is set to true, all drives from RAID that is during 
rebuild will blink during this operation. 

WHITELIST - Ledmon will limit changing LED state to controllers listed on whitelist. If 
any whitelist is set, only devices from list will be scanned by ledmon. The controllers 
should be separated by comma (,) character. 

EXAMPLES 

Excluding one controller from ledmon scans, changing log level and scans interval: 

LOG_LEVEL=all 
INTERVAL=5 
#Exclude disks from SATA controller 
BLACKLIST=/sys/devices/pci0000:00/0000:00:17.0 

Blink only on RAID members, blink on all disks during rebuild and ignore init phase: 

RAID_MEMBERS_ONLY=true 
BLINK_ON_INIT=false 
REBUILD_BLINK_ON_ALL=true 

LICENSE 

Copyright © 2009-2017 Intel® Corporation. 

This program is distributed under the terms of the GNU General Public License as 
published by the Free Software Foundation. See the built-in help for details on the 
License and the lack of warranty. 

§§ 


	Intel® Virtual RAID on CPU (Intel® VROC) for Linux* User Guide
	Contents
	Revision History
	1 Introduction
	1.1 Reference OEM Platform Documentation
	1.2 Supported RAID Volumes
	1.2.1 RAID 0 (Striping)
	1.2.2 RAID 1 (Mirroring)
	1.2.3 RAID 5 (Striping with Parity)
	1.2.4 RAID 10
	1.2.5 Intel® Matrix RAID

	1.3 Supported Linux* OS Distributions
	1.4 Terminology

	2 Manage Intel® VROC RAID in UEFI HII
	2.1 Enabling Intel® VROC (NVMe RAID) in UEFI HII
	2.2 Enabling Intel® VROC (SATA RAID) in UEFI HII
	2.3 Creating Intel® VROC NVMe RAID Volume in UEFI HII
	2.4 Creating Intel® VROC SATA RAID Volume in UEFI HII
	2.5 Removing RAID Volumes in UEFI HII

	3 Installation of Intel® VROC Linux* OS Drivers and Tools
	3.1 Installation of Intel® VROC Linux* Update Packages
	3.1.1 Installing Intel® VMD Replacement Driver during OS Installation
	3.1.2 Installing Intel® VROC out-of-box Drivers in Linux* OS

	3.2 Configuring Intel® VROC in Linux* Distributions with Inbox Support
	3.2.1 Configuring Intel® VROC in SUSE Linux* Enterprise Server (SLES) 15
	3.2.1.1 Installing SLES 15 SP2 onto Intel® VROC RAID
	3.2.1.2 Installing ledmon in SLES Family
	3.2.1.3 Enabling ledmon Service



	4 Intel® VROC RAID Management in Linux*
	4.1 Examine System’s Intel® VROC RAID Capabilities
	4.2 Creating Intel® VROC RAID Volume
	4.2.1 IMSM Container Device Creation
	4.2.2 RAID Volume Creation
	4.2.3 Intel® Matrix RAID Volume Creation
	4.2.4 RAID Volume Creation Parameters
	4.2.5 Additional Intel® VROC RAID Volume Creation Examples

	4.3 Reporting Intel® VROC RAID Information
	4.3.1 Block Device of Intel® VROC RAID Volume
	4.3.2 Retrieve RAID Status through /proc/mdstat
	4.3.3 Extracting detailed RAID information
	4.3.4 Reading Intel® VROC RAID Metadata

	4.4 Creating Intel® VROC RAID Configuration File
	4.5 Intel® VROC RAID Volume Initialization/Resync
	4.5.1 Adjusting Initialization/Resync Speed

	4.6 Adding a Hot Spare Drive
	4.7 Configuring Global Hot Spare
	4.8 Removing Intel® VROC RAID Volumes
	4.8.1 Stopping RAID Volume and Container
	4.8.2 Erasing RAID Metadata
	4.8.3 Removing One RAID Volume of Intel® Matrix RAID

	4.9 Assembling Intel® VROC RAID Volumes
	4.10 Creating File System on an Intel® VROC RAID Volume
	4.11 Removing an Active Intel® VROC RAID Member Disk
	4.12 Recovery of Intel® VROC RAID Volumes
	4.12.1 Auto Rebuilding to a Hot Spare
	4.12.2 Auto Rebuilding to a New Drive


	5 Intel® VROC RAID Logging and Monitoring in Linux*
	5.1 Intel® VROC RAID Logging in Linux*
	5.1.1 Use “demsg” to Retrieve Kernel Logging
	5.1.2 Use “journalct” to Retrieve System Journal Logs
	5.1.3 Use Syslog File: /var/log/messages

	5.2 Intel® VROC RAID Monitoring in Linux*
	5.2.1 Use mdadm Monitoring Daemon
	5.2.2 Use systemctl for RAID Monitoring

	5.3 Intel® VROC RAID Alerts in Linux*
	5.4 Develop a Program to Handle Intel® VROC Alerts

	6 Intel® VROC RAID Advanced Usages in Linux*
	6.1 Changing RAID Volume Name
	6.2 Enabling and Disabling PPL for Intel® VROC RAID 5 RWH Protection
	6.3 Enabling and Disabling Write-Intent Bitmap
	6.4 Changing RAID Chunk Size
	6.5 Online Capacity Expansion (OCE)
	6.5.1 OCE on Existing RAID Member Disks
	6.5.2 OCE by Adding New Drives

	6.6 RAID Level Migration
	6.6.1 RAID 1 to RAID 0 Migration
	6.6.2 RAID 10 to RAID 0 Migration
	6.6.3 RAID 0 to RAID 10 Migration
	6.6.4 RAID 0 to RAID 5 Migration
	6.6.5 RAID 1 to RAID 5 Migration
	6.6.6 RAID 10 to RAID 5 Migration


	7 Intel® VROC LED Management in Linux*
	7.1 Installing ledmon Package
	7.2 Configuring ledmon
	7.2.1 Configuring ledmon with systemd
	7.2.2 Configuring ledmon with /etc/rc.local

	7.3 Using ledctl Utility
	7.4 LED Activity During Hot-Plug Events
	7.5 Advanced LED Management

	Appendix A mdadm Quick Start Guide
	Appendix B MDRAID Sysfs Components
	Appendix C RAID Monitoring Parameters and Events
	Appendix D ledmon.conf

