

FWA-1010VC SW Define LED & Button

Project Name:FWA-1010VCAuthor(s):Justin.YangLast saved:09/04/2018Version:V1.00

APPROVALS						
Name (printed)	Title	Signature	Date			

Trusted ePlatform Services

Version: V1.00

Page 2 of 8

Advantech Confidential

HISTORY

Revision	Date	Person	Description
1.0	09/03/2018	Justin.Yang	1 st draft ref.

Version: V1.00

1. INTRODUCTION

This doc. will describe the FWA-1010VC hardware design specification on SW Define LED & SW_BTN, and the related H/W information for GPIO programming.

1.1 Mainboard Diagram Overview

This section describes detail block diagram and functionality of mainboard. Following is mainboard diagram, as the design doc, the SW Define LED pin (F5) & SW_BTN (F6) are controlled from Intel Rangeley SOC.

rigule 5. FWA-1010VC System From View	Figure	3: FWA-	1010VC	System	Front	View
---------------------------------------	--------	---------	--------	--------	-------	------

Item	Component	Description
F1	Power LED	Power status
F2	Disk Activity LED	SSD disk activity
F3	Wireless Status LED	Wireless activity
F4	Wi-Fi Status LED	Wi-Fi activity
F5	Software Defined LED	Status signaling
F6	Software Controlled Event Button	Event button for user interaction

Trusted ePlatform Services

Version: V1.00

Page 4 of 8

2. FWA-1010VC SOC GPIO DESIGN

2.1 SOC GPIO Configuration

In FWA-1010VC design, the Software Define LED (F5) is controlled by GBE_LED0 & GBE_LED1 of Intel Rangeley SOC, and SW Define Button (F6) is controlled by UART1_TXD.

GBE_LED0 & GBE_LED1 of Intel Rangeley SOC:

Circuit of Software Define LED connector:

UART1_TXD of Intel Rangeley SOC:

Circuit of SW Define Button:

Version: V1.00

Page 5 of 8

2.2 Pin Definitions for SW Define LED & SW_BTN

Following table is Pin definition on SW Define LED

Pin Number	Name	Pin Description
1	Vcc3	3.3V voltage.
2	SW_GPIO_LED_G_N	Green LED control pin
3	SW_GPIO_LED_O_N	Orange LED control pin

Following table is Pin definition on SW_BTN

Pin Number	Name	Pin Description
1	SW_BTN_UART1_TXD	SW_BTN signal input pin
2	GND	Ground

2.3 GPIO of SW Define LED

Following tables are GBE_LED0 & GBE_LED1 GPIO registers setting.

CRE LEDO	As BIOS Starts	GBE_LED0	0	None	V3P3A
	SUS_USE_SEL = 1	GPIO_SUS19	Set by SW	Design Specific	V3P3A
GRE LED1	As BIOS Starts	GBE_LED1	0	None	V3P3A
ODL_LEDI	SUS_USE_SEL = 1	GPIO_SUS20	Set by SW	Design Specific	V3P3A

User can check reg status from IOPORT 0x58A

I) Sp	ace		Stai	rt:(0500) I	Ind	:060	00							
				0.0		0.5	0.0				0.7		0.0				2020030 0022
82	1 00	01	02	03	04	05	06	07	80	09	0A	0B	0C	0D	0E	0F	Refresh : ON
0() 80	80	02	00	80	80	02	00	80	80	02	00	80	00	00	00	Sound : OFF
1(00	00	00	00	00	00	00	00	00	00	00	00	FF	FF	FF	FF	Data Width : 8 bits
20) FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
3() FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
4 () FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
5() FF	FF	FF	FF	FF	FF	$\mathbf{F}\mathbf{F}$	FF	$\mathbf{F}\mathbf{F}$	FF	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF	
6() FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	$\mathbf{F}\mathbf{F}$	FF	FF	
7() FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
8(04	00	18	00	04	00	00	00	04	00	00	00	00	00	00	00	
9(00	00	00	00	00	00	00	00	00	00	000	000	000	FF	FF	FF	
A) FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
B) FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
C) FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
D) FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
E.(नन्त् (मम	ਜ਼ਾਜ਼	ਜਾਜ	FF	FF	FF	FF	FF	FF	FF	म म	FF	FF	ਜਾਜ	ਜ਼ਾਜ਼	
E(मन्त्र (मम	ਜਜ	ਜਜ	मम	मम	FF	ਜਾਜ	FF	मम	मम	FF	मम	ਜਾਜ	मम	मम	
E (E-E	15-15	15-15	E-E	EE	EE	EE	EE	EE	EE	EE	E-E	EE	EE	TT	
Type	TO	Spai	ce	S	tart	E 01	500										

Version: V1.00

Here we use Linux ioport utility to demonstrate LED control (<u>http://people.redhat.com/rjones/ioport/</u>)

Note for ioport utilities

These commands enable command line and script access directly to I/O ports on PC hardware. The *inb*, inw and inl commands perform an input (read) operation on the given I/O port, and print the result.

The outb, *outw* and outl commands perform an output (write) operation to the given I/O port, sending the given data. Note that the order of the parameters is ADDRESS DATA.

The size of the operation is selected according to the suffix, with b meaning byte, wmeaning word (16 bits) and I meaning long (32 bits).

Download and Install ioport utility

wget http://people.redhat.com/rjones/ioport/files/ioport-1.2
tar zxvf ioport-1.2.tar.gz
cd ioport-1.2/
./configure
checking for a BSD-compatible install /usr/bin/install -c
~~ skip process ~~
make
make all-am
make[1]: Entering directory '/root/ioport-1.2'
~~ skip process ~~

<u>Set LED</u>

# ./outw 0x58a 0x08	- Orange
# ./outw 0x58a 0x10	- Green
# ./outw 0x58a 0x18	- OFF

Trusted ePlatform Services

Version: V1.00

2.4 GPIO of SW Define Button

Following tables are URAT1_TXD GPIO register setting

Customer GP when SC_USE_ Bit = 1	SoC Ball/Pin Number	SoC Power Well	Bit in GBASE 00h-17h Registers	+	w	Native Signa ien SC_USE_ Bit = 0	al SEL	
GPIOS_0		AL56	Core	0		NMI		
GPIOS_1		AL63	Core	1		ERR	OR2_B	
GPIOS_2		AL62	Core	2		ERROR1_B		
GPIOS_3		AL65	Core	3		ERROR0_B		
GPIOS_4	AM52	Core	Core 4		IERR_B			
GPIOS_5		AL52	Core	5		MCERR_B		
GPIOS_6		AG50	Core	6		UART1_RXD		
GPIOS_7	AH50	Core	Core 7		UART1_TXD			
Strap S		ampling	0 = Override SPI Flash Descriptor Security			I	20K PU	V3P3S
UART1_TXD	As BIOS	5 Starts	UART1_TXD		0		None	V3P3S
	SC_USE	_SEL = 1	GPIOS_7		Set by SW		Design Specific	V3P3S

A software defined button (F6 in Figure 3) is provided on the FWA-1010VC. BIOS is programmed well to monitor button event trigger. The acpid service (ACPI event daemon) is used to handle the corresponding action of this button event. When user press software controlled button, the button event will be triggered and the corresponding action will be executed.

Here's an example on how SW defined button behaves under CentOS 7

1. Make sure there is no other service that handle the sleep button event. CentOS 7 default will use systemd-logind to handle the sleep button event.

A. Disable it by modifying "/etc/systemd/logind.conf". Set HandleSuspendKey=ignore

HandleSuspendKey=ignore
HandleHibernateKey=ignore
HandleLidSwitch=ignore
HandleLidSwitchDocked=ignore
B. Restart the service

systemctl restart systemd-logind.service

2. Use acpid to handle the action of sleep button.

A. install acpid by yum install

Advantech Confidential

Version: V1.00

Page 8 of 8

yum install acpid

B. Create and edit /etc/acpi/events/sleepconf

event=button/sleep.*

action=/etc/acpi/actions/sleep.sh

*Event file name can have any name you like.

*The "event" line is a regular expression specifying the events we're interested in. in this case we use sleep event.

*The "action" line is the command to be executed when these events are dispatched.

Here we call the sleep.sh residing in /etc/acpi/actions, you can write some complex actions in this script.

e.g. vim /etc/acpi/actions/sleep.sh

#!/bin/sh

echo "SW button test"

C. Start / Restart acpid (you can check how many rule loaded by checking acpid status.)

systemctl start acpid.service

systemctl status acpid.service

â— acpid.service - ACPI Event Daemon

Loaded: loaded (/usr/lib/systemd/system/acpid.service; enabled; vendor preset: enabled)

Active: active (running) since Tue 2018-09-04 11:49:16 UTC; 2s ago

Process: 2515 ExecStart=/usr/sbin/acpid \$OPTIONS (code=exited, status=0/SUCCESS) Main PID: 2516 (acpid)

CGroup: /system.slice/acpid.service

â""â"€2516 /usr/sbin/acpid

Sep 04 11:49:16 1010 systemd[1]: Starting ACPI Event Daemon...

Sep 04 11:49:16 1010 acpid[2516]: starting up with netlink and the input layer

Sep 04 11:49:16 1010 acpid[2516]: skipping incomplete file /etc/acpi/events...nf

Sep 04 11:49:16 1010 acpid[2516]: 2 rules loaded

Sep 04 11:49:16 1010 acpid[2516]: waiting for events: event logging is off

Sep 04 11:49:16 1010 systemd[1]: Started ACPI Event Daemon.

Hint: Some lines were ellipsized, use -I to show in full.

D. Execute #acpi_listen so you can see the button is pressed.

acpi_listen

E . When button is pressed, you will see

button/sleep SBTN 00000080 00000000